WAEC Mathematics Past Questions & Answers - Page 136

676.

A bucket holds 10 litres of water. How many buckets of water will fill a reservoir of size 8m x 7m x 5m.(1 litre = 1000cm3)`

A.

28

B.

280

C.

2800

D.

28000

Correct answer is D

No. of buckets of water = \(\frac{\text{Capacity of reservoir}}{\text{Capacity of buckets}}\)

= \(\frac{800 \times 700 \times 500}{10 \times 1000}\)

= \(\frac{28000 0000}{10000}\)

= 28000

677.

Each of the interior angles of a regular polygon is 140o. Calculate the sum of all the interior angles of the polygon

A.

1080o

B.

1260o

C.

1800o

D.

2160o

Correct answer is B

Each interior angle = 140

\(\frac{(n - 2) \times 180}{n} = 140\)

(n - 2) x 180 = 140n

150 - 360 = 140n

180m - 140n = 360

40n - 360

n = \(\frac{360}{40}\)

n = 9

Sum of all interior angles = (n - 2) x 180

= (9 - 2) x 180

= 7 x 180

= 1260

678.

If c and k are the roots of 6 - x - x2 = 0, find c + k

A.

2

B.

1

C.

-1

D.

-3

Correct answer is C

6 - x - x2 = 0

a = -1; b = -1; c = 6

Sum of roots = c + k = -\(\frac{-b}{a}\)

= \(\frac{-(-1)}{-1}\)

= -1

679.

If a positive integer, list the values of x which satisfy the equation 3x - 4 < 6 and x - 1 > 0

A.

{1, 2, 3}

B.

{2, 3}

C.

{2, 3, 4}

D.

{2, 3, 4, 5}

Correct answer is B

3x - 4 < 6 = 3x < 6 = 4

3x < 10

x < \(\frac{10}{3}\)

x < 3.33 and x - 1 = 0

n > 1 = 1< x; since x is an integer, and 1 < x3.33

x = {2, 3}

680.

solve \(\frac{2x + 1}{6} - \frac{3x - 1}{4}\) = 0

A.

1

B.

\(\frac{1}{5}\)

C.

-\(\frac{1}{5}\)

D.

-1

Correct answer is A

\(\frac{2x + 1}{6} - \frac{3x - 1}{4}\) = 0

\(\frac{4(2n + 1) - 6(3x - 1)}{24}\) = 0

-10x + 10 = 0

-10x = -10

x = \(\frac{-10}{-10}\)

x = 1