WAEC Further Mathematics Past Questions & Answers - Page 138

686.

A force (10i + 4j)N acts on a body of mass 2kg which is at rest. Find the velocity after 3 seconds.

A.

\((\frac{5i}{3} + \frac{2j}{3})ms^{-1}\)

B.

\((\frac{10i}{3} + \frac{4j}{3})ms^{-1}\)

C.

\((5i + 2j)ms^{-1}\)

D.

\((15i + 6j)ms^{-1}\)

Correct answer is D

Recall, \(F = mass \times acceleration \implies acceleration = \frac{force}{mass}\)

= \(\frac{10i + 4j}{2} = (5i + 2j) ms^{-2}\)

= \(v = u + at  \implies v \text{at 3 seconds} = 0 + (5i + 2j \times 3)\)

= \((15i + 6j) ms^{-1}\)

687.

Given that a = 5i + 4j and b = 3i + 7j, evaluate (3a - 8b).

A.

9i + 44j

B.

-9i + 44j

C.

-9i - 44j

D.

9i - 44j

Correct answer is C

= \(3(5i+4j) - 8(3i+7j) = 15i + 12j - 24i -56j\)

= \(-9i - 44j\)

688.

Face 1 2 3 4 5 6
Frequency 12 18 y 30 2y 45

 Given the table above as the result of tossing a fair die 150 times, find the mode.

A.

3

B.

4

C.

5

D.

6

Correct answer is D

The mode is the occurrence with the highest frequency which, from the table, is 45 (the occurrence of obtaining a 6).

689.

Face 1 2 3 4 5 6
Frequency 12 18 y 30 2y 45

Given the table above as the results of tossing a fair die 150 times. Find the probability of obtaining a 5.

A.

\(\frac{1}{10}\)

B.

\(\frac{1}{6}\)

C.

\(\frac{1}{5}\)

D.

\(\frac{3}{10}\)

Correct answer is C

Probability of obtaining a 5 = \(\frac{\text{frequency of 5}}{\text{total frequency}}\)

\(12+18+y+30+2y+45 = 150 \implies 105+3y = 150\)

\(3y = 45; y = 15\)

Probability of 5 = \(\frac{2\times 15}{150} = \frac{1}{5}\)

690.

Given that \( a = \begin{pmatrix} 2 \\ 3 \end{pmatrix}\) and \(b = \begin{pmatrix} -1 \\ 4 \end{pmatrix}\), evaluate \((2a - \frac{1}{4}b)\)

A.

\(\begin{pmatrix} \frac{17}{4} \\ 7 \end{pmatrix}\)

B.

\(\begin{pmatrix} \frac{17}{4} \\ 5 \end{pmatrix}\)

C.

\(\begin{pmatrix} \frac{17}{4} \\ 3 \end{pmatrix}\)

D.

\(\begin{pmatrix} \frac{17}{4} \\ 2 \end{pmatrix}\)

Correct answer is B

\(a = \begin{pmatrix} 2 \\ 3 \end{pmatrix}\); \(b = \begin{pmatrix} -1 \\ 4 \end{pmatrix}\)

\(\implies 2 \times a = \begin{pmatrix} 4 \\ 6 \end{pmatrix}\) and \(\frac{1}{4} \times b = \begin{pmatrix} -\frac{1}{4} \\ 1 \end{pmatrix}\)

\(\therefore 2a - \frac{1}{4}b = \begin{pmatrix} 4 - \frac{-1}{4} \\ 6 - 1 \end{pmatrix}\)

= \(\begin{pmatrix} \frac{17}{4} \\ 5 \end{pmatrix}\)