Simplify \(\frac{4}{2x} - \frac{2x + x}{x}\)
-1
-2x
2x
\(\frac{2 - x}{2x}\)
Correct answer is A
\(\frac{4}{2x} - \frac{2 + x}{x} = \frac{4 - 2(2 + x)}{2x}\)
= \(\frac{4 - 4 - 2x}{2x} = \frac{-2x}{2x}\)
= 1
Expand the expression(3a - xy)(3a + xy)
9a2 - x2y2
9a2 + x2y2
9a2 - xy
9a2 + x2y
Correct answer is A
(3a - xy)(3a + xy); (3a)2 - (xy)2
difference of two sqs; 9a2 - x2y2
Find the smallest value of k such that 2\(^2\) x 3\(^3\) x 5 x k is a perfect square.
3
5
15
30
Correct answer is C
2\(^2\) x 3\(^3\) x 5\(^1\) x k;
2\(^2\) x 3\(^2\) x 3 x 5 x k
2\(^2\) x 3\(^2\) x 15 x k
smallest value for k
2\(^2\) x 3\(^2\) x 15 = 2\(^2\) x 3\(^2\) x 15\(^2\)
k = 15
For what range of values of x is 4x - 3(2x - 1) > 1?
x > -1
x > 1
x < 1
x < -1
Correct answer is C
4x - 3(2x - 1) > 1
4x - 6x + 3 > 1
-2x > 1 - 3; 2x > -2
x < \(\frac{-2}{-2}\)
= x < 1
make w the subject of the relation \(\frac{a + bc}{wd + f}\) = g
\(\frac{a + bc - fg}{dg}\)
\(\frac{a - bc + fg}{dg}\)
\(\frac{a + bc - f}{dg}\)
\(\frac{a + bc - dg}{dg}\)
Correct answer is A
\(\frac{a + bc}{wd + f}\) = g(cross multiply)
a = bc + wdg + fg
wdg = a + bc - fg
w = \(\frac{a + bc - fg}{dg}\)