WAEC Past Questions and Answers - Page 4013

20,061.

In the diagram above, PQ is parallel to TU, ∠PQR = 50°, ∠QRS = 86° and ∠STU = 64°. Calculate the value of x.

A.

136o

B.

120o

C.

108o

D.

100o

E.

96o

Correct answer is D

No explanation has been provided for this answer.

20,062.

In the diagram above, AO is perpendicular to OB. Find x

A.

7.5o

B.

15o

C.

22.5o

D.

30o

E.

38.6o

Correct answer is D

4x + 3x + 2x + 90 =360° [angle at a point]

9x + 90 = 360°

9x = 360° - 90°

9x = 270

x = 270/9

x = 30°

20,063.

In the diagram above; O is the centre of the circle and |BD| = |DC|. If ∠DCB = 35°, find ∠BAO.

A.

20o

B.

25o

C.

30o

D.

35o

E.

40o

Correct answer is A

< DBC = 35° (base angles of an isosceles triangle)

< CDB = 180° - (35° + 35°)

= 110°

< ADB = 70°; < ADB = 90°

\(\therefore\) < BAO = 180° - (70° + 90°)

= 20°

20,064.

The angle of a sector of a circle is 108°. If the radius of the circle is 31/2cm, find the perimeter of the sector

A.

6 3/5cm

B.

6 4/5cm

C.

7 1/10cm

D.

10 2/5cm

E.

13 3/5cm,

Correct answer is E

Perimeter of sector = \(\frac{\theta}{360°} \times 2\pi r + 2r\)

= \(\frac{108}{360} \times 2 \times \frac{22}{7} \times \frac{7}{2} + 2(\frac{7}{2})\)

= \(6 \frac{3}{5} + 7\)

= \(13 \frac{3}{5} cm\)

20,065.

A 120° sector of a circle of radius 21cm is bent to form a cone. What is the base radius of the cone?

A.

31/2cm

B.

7cm

C.

1O1/2cm

D.

14cm

E.

21cm

Correct answer is B

The length of the arc subtended by the sector of angle 120° = circumference of the base of the cone.

\(\frac{120}{360} \times 2 \times \frac{22}{7} \times 21 = 2\pi r\)

\(44 = 2\pi r\)

\(r = 22 \div \pi\)

\(r = 22 \times \frac{7}{22}\)

r = 7 cm