Solve the equation 7y\(^2\) = 3y
y = 3 or 7
y = 0 or 7
y = 0 or 3/7
y = 0 or 9
y = 0 or 10
Correct answer is C
7y\(^2\) = 3y
7y\(^2\) - 3y = 0
y(7y - 3) = 0
y = 0 or y = \(\frac{3}{7}\)
(2e-1) (e-1)
(e+1) (2e+1)
(2e+3) (e+2)
(2e-3) (e-1)
(e2-3(2e-1)
Correct answer is A
2e\(^2\) - 3e + 1
2e\(^2\) - 2e - e + 1
2e(e - 1) - 1(e - 1)
(2e - 1)(e - 1)
(x-4) (x+48)
(x-48) (x+4)
(x-12) (x+16)
(x-12) (x-16)
(x+12) (x+16)
Correct answer is C
x\(^2\) + 4x - 192
x\(^2\) + 16x - 12x - 192
x(x + 16) - 12(x + 16)
(x + 16)(x - 12)
5.2cm
10.5cm
13.2cm
20.6cm
31.4cm
Correct answer is B
In the figure, < AOC = 2 x < ABC = 60° (angle subtended at the centre)
\(\therefore\) Arc AC = \(\frac{60}{360} \times 2 \times 10 \times 3.14\)
= \(\frac{31.4}{3}\)
= 10.466 cm \(\approxeq\) 10.5 cm
The area shaded with horizontal lines is the solution set of the inequalities;
y ≥ x, y + 3 ≥ 2x, x ≤ 3
y ≤ x, y + 2x ≥ -3, x ≤ 3
y ≤ -x, y + 2x ≤ 3, x ≥ -3
y ≥ -x, y + 3 ≤ 2x, x ≥ -3
y ≤ x, y ≤ 2x - 3, x ≥ 3
Correct answer is B
No explanation has been provided for this answer.