WAEC Further Mathematics Past Questions & Answers - Page 47

231.

Find the coefficient of \(x^{4}\) in the binomial expansion of \((1 - 2x)^{6}\).

A.

320

B.

240

C.

-320

D.

-240

Correct answer is B

\((1 - 2x)^{6} = ^{6}C_{0}(1^{6}) + ^{6}C_{1}(1^{5})(-2x^{1})  + ^{6}C_{2}(1^{4})(-2x^{2}) + ^{6}C_{3}(1^{3})(-2x^{3}) + ^{6}C_{4}(1^{2})(-2x^{4}) + ...\)

\(\text{The coefficient of} x^{4} = 15 \times 16 = 240\)

232.

If \(f(x) = \frac{1}{2 - x}, x \neq 2\), find \(f^{-1}(-\frac{1}{2})\).

A.

4

B.

0

C.

-2

D.

-4

Correct answer is A

\(f(x) = \frac{1}{2 - x}, x \neq 2\)

\(f(y) = \frac{1}{2 - y}\)

\(x = \frac{1}{2 - y}\) (Let x = f(y))

\(2x - xy = 1 \implies y = \frac{2x - 1}{x}\)

\(\therefore f^{-1}(x) = \frac{2x - 1}{x}\)

\(f^{-1}(-\frac{1}{2}) = \frac{2(-\frac{1}{2}) - 1}{-\frac{1}{2}}\)

= \(-2 \times -2 = 4\)

233.

Given that \((\sqrt{3} - 5\sqrt{2})(\sqrt{3} + \sqrt{2}) = p + q\sqrt{6}\), find q.

A.

4

B.

-4

C.

-5

D.

-7

Correct answer is B

\((\sqrt{3} - 5\sqrt{2})(\sqrt{3} + \sqrt{2}) = 3 + \sqrt{6} - 5\sqrt{6} - 10\)

= \(-7 - 4\sqrt{6} = p + q\sqrt{6}\)

\(\therefore q = -4\)

234.

Given that \(\frac{1}{8^{2y - 3y}} = 2^{y + 2}\).

A.

\(\frac{1}{5}\)

B.

\(\frac{7}{8}\)

C.

1

D.

\(1\frac{1}{5}\)

Correct answer is C

\(\frac{1}{8^{2y - 3y}} = \frac{1}{8^{-y}} = 8^{y}\)

\(8^{y} = 2^{y + 2} \implies (2^{3})^{y} = 2^{y + 2}\)

\(3y = y + 2 \implies 2y = 2\)

\(y = 1\)

235.

Two functions f and g are defined by \(f : x \to 3x - 1\) and \(g : x \to 2x^{3}\), evaluate \(fg(-2)\)

A.

-49

B.

-47

C.

-10

D.

-9

Correct answer is A

\(g : x \to 2x^{3}\)

\(g(-2) = 2(-2^{3}) = 2(-8) = -16\)

\(f : x \to 3x - 1\)

\(f(-16) = 3(-16) -1 = -48 - 1 = - 49\)