\(45^o\)
\(95^o\)
\(84^o\)
\(85^o\)
Correct answer is C
x + 2x + 2x + (x + \(30^o\)) + (x + \(20^o\)) + (x - \(10^o\)) = (2n - 4) x \(90^o\)
8x + 50 \(^o\) - 10\(^o\) = (2 x 6 -4) x 90\(^o\)
8x + 40\(^o\) = 8 x 90\(^o\) = 720\(^o\)
8x = 720\(^o\) - 40\(^o\) = 680\(^o\)
x = \(\frac{680^o}{8}\)
= 85\(^o\)
113\(cm^3\)
131\(cm^3\)
311\(cm^3\)
414\(cm^3\)
Correct answer is A
Surface area of a sphere = \(4 \pi r^2\) \(4 \pi r^2\) = \(\frac{792}{7}cm^2\) 4 x \(\frac{22}{7}\) x \(r^2\) = \(\frac{792}{7}\) \(r^2\) = \(\frac{792}{7}\) x \(\frac{7}{4 \times 22}\) = 9 r = \(\sqrt{9}\) = 3cm Hence, volume of sphere = \(\frac{4}{3} \pi r^3\) = \(\frac{4}{3} \times \frac{22}{7} \times 3 \times 3 \times 3 \) = \(\frac{4 \times 22 \times 9}{7}\) \(\approx\) = 113.143 = 113\(cm^3\) (to the nearest whole number)
14m
10m
7m
5m
Correct answer is C
Volume of a cylinder = \( \pi r^2\)h
385 = \(\frac{22}{7}\) x \(r^2\) x 10
385 x 7 = 22 x \(r^2\) x 10
\(r^2\) = \(\frac{385 \times 7}{22 \times 10}\)
= 12.25
r = \(\sqrt{12.25}\)
= 3.5m
Hence, diameter of tank = 2r
= 2 x 3.5 = 7m
A curve is such that when y = 0, x = -2 or x = 3. Find the equation of the curve.
y = \(x^2 - 5x - 6\)
y = \(x^2 + 5x - 6\)
y = \(x^2 + x - 6\)
y = \(x^2 - x - 6\)
Correct answer is A
Since the curve cuts the x-axis at x = -2 and x = 3,
(x + 2)(x - 3) = 0
\(x^2 - 3x + 2x - 6\) = 0
\(x^2 - x - 6\) = 0
Hence, the equation of the curve is
y = \(x^2 - x - 6\)
Simplify; \(\frac{2 - 18m^2}{1 + 3m}\)
\(2 (1 + 3m)\)
\(2 (1 + 3m^2)\)
\(2(1 - 3m)\)
\(2(1 - 3m^2)\)
Correct answer is C
\(\frac{2 - 18m^2}{1 + 3m}\) = \(\frac{2(1 - 9)m^2}{1 + 3m}\)
= \(\frac{2(1 + 3m)(1 - 3m)}{1 + 3m}\)
= \(2(1 - 3m)\)