WAEC Mathematics Past Questions & Answers - Page 63

311.

The angles of a polygon are x, 2x, 2x, (x + \(30^o\)), (x + \(20^o\)) and (x - \(10^o\)). Find the value of x

A.

\(45^o\)

B.

\(95^o\)

C.

\(84^o\)

D.

\(85^o\)

Correct answer is C

x +  2x + 2x + (x + \(30^o\)) + (x + \(20^o\)) + (x - \(10^o\)) = (2n - 4) x \(90^o\)

8x + 50 \(^o\) - 10\(^o\) = (2 x 6 -4) x 90\(^o\)

8x + 40\(^o\) = 8 x 90\(^o\) = 720\(^o\)

8x = 720\(^o\) - 40\(^o\) = 680\(^o\)

x = \(\frac{680^o}{8}\)

= 85\(^o\)

312.

The surface area of a sphere is \(\frac{792}{7} cm^2\). Find, correct to the nearest whole number, its volume. [Take \(\pi = \frac{22}{7}\)]

A.

113\(cm^3\)

B.

131\(cm^3\)

C.

311\(cm^3\)

D.

414\(cm^3\)

Correct answer is A

Surface area of a sphere = \(4 \pi r^2\) \(4 \pi r^2\) = \(\frac{792}{7}cm^2\) 4 x \(\frac{22}{7}\) x \(r^2\) = \(\frac{792}{7}\) \(r^2\) = \(\frac{792}{7}\) x \(\frac{7}{4 \times 22}\) = 9 r = \(\sqrt{9}\) = 3cm Hence, volume of sphere = \(\frac{4}{3} \pi r^3\) = \(\frac{4}{3} \times \frac{22}{7} \times 3 \times 3 \times 3 \) = \(\frac{4 \times 22 \times 9}{7}\) \(\approx\) = 113.143 = 113\(cm^3\) (to the nearest whole number)

313.

The volume of a cylindrical tank, 10m high is 385 m\(^2\). Find the diameter of the tank. [Take \(\pi = \frac{22}{7}\)]

A.

14m

B.

10m

C.

7m

D.

5m

Correct answer is C

Volume of a cylinder = \( \pi r^2\)h

385 = \(\frac{22}{7}\) x \(r^2\) x 10

385 x 7 = 22 x \(r^2\) x 10

\(r^2\) = \(\frac{385 \times 7}{22 \times 10}\)

= 12.25

r = \(\sqrt{12.25}\)

= 3.5m

Hence, diameter of tank = 2r

= 2 x 3.5 = 7m

314.

A curve is such that when y = 0, x = -2 or x = 3. Find the equation of the curve.

A.

y = \(x^2 - 5x - 6\)

B.

y = \(x^2 + 5x - 6\)

C.

y = \(x^2 + x - 6\)

D.

y = \(x^2 - x - 6\)

Correct answer is A

Since the curve cuts the x-axis at x = -2 and x = 3,

(x + 2)(x - 3) = 0

\(x^2 - 3x + 2x - 6\) = 0

\(x^2 - x - 6\) = 0

Hence, the equation of the curve is

y = \(x^2 - x - 6\)

315.

Simplify; \(\frac{2 - 18m^2}{1 + 3m}\)

A.

\(2 (1 + 3m)\)

B.

\(2 (1 + 3m^2)\)

C.

\(2(1 - 3m)\)

D.

\(2(1 - 3m^2)\)

Correct answer is C

\(\frac{2 - 18m^2}{1 + 3m}\) = \(\frac{2(1 - 9)m^2}{1 + 3m}\)

= \(\frac{2(1 + 3m)(1 - 3m)}{1 + 3m}\)

= \(2(1 - 3m)\)