WAEC Mathematics Past Questions & Answers - Page 82

406.

Adding 42 to a given positive number gives the same result as squaring the number. Find the number

A.

14

B.

13

C.

7

D.

6

Correct answer is C

Let the given positive number be x

Then 4 + x = x2

0 = x2 - x - 42

or x2 - x - 42 = 0

x2 - 7x + 6x - 42 = 0

x(x - 7) + 6(x - 7) = 0

= (x + 6)(x - 7) = 0

x = -6 or x = 7

Hence, x = 7

407.

If m = 4, n = 9 and r = 16., evaluate \(\frac{m}{n}\) - 1\(\frac{7}{9}\) + \(\frac{n}{r}\)

A.

1\(\frac{5}{16}\)

B.

1\(\frac{1}{16}\)

C.

\(\frac{5}{16}\)

D.

- 1\(\frac{37}{48}\)

Correct answer is D

If m = 4, n = 9, r = 16,

then \(\frac{m}{n}\) - 1\(\frac{7}{9}\) + \(\frac{n}{r}\)

= \(\frac{4}{9}\) - \(\frac{16}{9}\) + \(\frac{9}{16}\)

= \(\frac{64 - 256 + 81}{144}\)

= \(\frac{-111}{144}\)

= - 1\(\frac{37}{48}\)

408.

Find the equation whose roots are \(\frac{3}{4}\) and -4

A.

4x2 - 13x + 12 = 0

B.

4x2 - 13x - 12 = 0

C.

4x2 + 13x - 12 = 0

D.

4x2 + 13x + 12 = 0

Correct answer is C

Let x = \(\frac{3}{4}\) or x = -4

i.e. 4x = 3 or x = -4

(4x - 3)(x + 4) = 0

therefore, 4x2 + 13x - 12 = 0

409.

Factorize completely: 6ax - 12by - 9ay + 8bx

A.

(2a - 3b)(4x + 3y)

B.

(3a + 4b)(2x - 3y)

C.

(3a - 4b)(2x + 3y)

D.

(2a + 3b)(4x -3y)

Correct answer is B

6ax - 12by - 9ay + 8bx

= 6ax - 9ay + 8bx - 12by

= 3a(2x - 3y) + 4b(2x - 3y)

= (3a + 4b)(2x - 3y)

410.

If 2n = y, Find 2\(^{(2 + \frac{n}{3})}\)

A.

4y\(^\frac{1}{3}\)

B.

4y\(^-3\)

C.

2y\(^\frac{1}{3}\)

D.

2y\(^-3\)

Correct answer is A

If 2n = y,

then, 2\(^{(2 + \frac{n}{3})}\) = 22 x 2\(^\frac{n}{3}\)

= 4 x (2n)\(^{\frac{1}{3}}\)

But y = 2n, hence

2\(^{(2 + \frac{n}{3})}\) = 4 x y\(^{\frac{1}{3}}\)

= 4y\(^\frac{1}{3}\)