Find the number of term in the Arithmetic Progression(A.P) 2, -9, -20,...-141.
11
12
13
14
Correct answer is D
T1, T2, T3
2, -9, -20 .... -141
l = a + (n - 1)d
first term, a = 2
common difference d = T3 - T2
= T2 - T1
= -20 - (-9) = -9 -2
= -20 + 9
= -9 -2
= -20 + 9
= -11
-11 = -11
d = -1
last term l = -141
-141 = 2 + (\(\cap\) - 1) (-11)
-141 = 2 + (-11 \(\cap\) + 11)
= 2 - 11\(\cap\) + 11
-141 = 13 - 11\(\cap\)
-141 - 13 = -11\(\cap\)
-154 = -11\(\cap\)
\(\cap\) = \(\frac{-154}{-11}\)
\(\cap\) = 14
Each exterior angle of a polygon is 30o. Calculate the sum of the interior angles
540o
720o
1080o
1800o
Correct answer is D
number of sides = \(\frac{360^o}{\theta} = \frac{360^o}{306o}\)
n = 12o
Sum of interior angle = (n - 2) 180o
(12 - 2) 180v = 10 x 180o
= 1800o
\(\frac{4}{5}\)
\(\frac{3}{4}\)
\(\frac{3}{5}\)
\(\frac{1}{20}\)
Correct answer is C
prob(p) = \(\frac{1}{5}\)
prob(Q) = \(\frac{1}{4}\)
Prob(neither p) = 1 - \(\frac{1}{5}\)
\(\frac{5 - 1}{5} = \frac{4}{5}\)
prob(neither Q) = 1 - \(\frac{1}{4}\)
\(\frac{4 - 1}{4} = \frac{3}{4}\)
prob(neither of them) = \(\frac{4}{5} \times \frac{3}{4} = \frac{12}{20}\)
= \(\frac{3}{5}\)
If log 5.957 = 0.7750, find log \(3 \sqrt{0.0005957}\)
4.1986
2.9250
1.5917
1.2853
Correct answer is B
\(3 \sqrt{0.0005957}\)
\(\begin{array}{c|c} \log No(0.0005957) & \frac{1}{3} \log \frac{1}{3} \\ \hline (0.0005957)^{\frac{1}{3}} & 4.7750 \times \frac{1}{3} \\ & 6 + 2.7750 \\\hline & 3 \\\hline & 2.9250\end{array}\)
\(\frac{5}{9}\)
1\(\frac{4}{9}\)
\(\frac{1}{3}\)
\(\frac{2}{9}\)
Correct answer is C
p = { 1, 2, 3}
Q = {2, 3, 5}
prob(prime number) = prob(1 and 2) or
= prob(2 and 3) or
= prob(3 and 2)
There are three possibilities of the sum being prime
Total possibility = 9
probability(sum being prime) = \(\frac{3}{9}\)
= \(\frac{1}{3}\)