Processing math: 50%

WAEC Further Mathematics Past Questions & Answers - Page 9

41.

The length of the line joining points (x,4) and (-x,3) is 7 units. Find the value of x.

A.

4√3

B.

2√6

C.

3√2

D.

2√3

Correct answer is D

d = (x2x1)2+(y2y1)2
x1 = x, x2 = -x, y1 = 4, y2 = 3, d = 7
7 =  (xx)2+(34)2
7 = (2x)2+(1)2
7 = ( 4x2+1
square both sides
72 = 4x2 + 1
collect like terms
4x2 = 49 - 1
4x2 = 48

x2 = 484

x2 = 12
x = √12
x = 2√3

42.

If f(x-1) = x3 + 3x2 + 4x - 5, find f(2)

A.

61

B.

25

C.

20

D.

13

Correct answer is A

x - 1 = 2
x = 3
f(2) = (3)3 + 3(3)2 + 4(3) - 5
f(2) = 27 + 27 + 12 - 5

= 61

43.

A particle is acted upon by forces F = (10N, 060º), P = (15N, 120º) and Q = (12N, 200º). Express the force that will keep the particle in equilibrium in the form xi + yj, where x and y are scalars.

A.

17.55i + 13.78j

B.

17.55j - 13.78i

C.

-17.55i + 13.78j

D.

-17.55i - 13.78j

Correct answer is B

Converting the forces to their rectangular forms
F = (10N, 060º)
Fx = 10cos60 = 5i
fy = 10sin60 = 8.66j
F = 5i + 8.66j
P = (15N, 120º)
Px = 15cos120 = -7.5i
py = 15sin120 = 12.99j
P = -7.5i + 12.99j
Q = (12N, 200º)
Qx = 12cos200 = -11.28i
Qy = 12sin200 = -4.1j
Q = -11.28i -4.1j
The resultant force = F + P + Q
R = 5i + 8.66j + (-7.5i + 12.99j) + (-11.28i -4.1j)
R = -13.78i + 17.55j

44.

If α and β are roots of x2 + mx - n = 0, where m and n are constants, form the

equation whose roots are 1
α
and 1
β
.

A.

mnx2 - n2 x - m = 0

B.

mx2 - nx + 1 = 0

C.

nx2 - mx + 1 = 0

D.

nx2 - mx - 1 = 0

Correct answer is D

x2 + mx - n = 0

a = 1, b = m, c = -n

α + β = bam1 = -m

αβ = can1 = -n

the roots are = \frac{1}{α} and \frac{1}{β}

sum of the roots = \frac{1}{α} + \frac{1}{β}

\frac{1}{α} + \frac{1}{β}\frac{α+β}{αβ}

α + β = -m
αβ = -n

\frac{α+β}{αβ}\frac{-m}{-n} → \frac{m}{n}

product of the roots = \frac{1}{α}\frac{1}{β}

\frac{1}{α} + \frac{1}{β}\frac{1}{αβ} → \frac{1}{-n}

x^2 - (sum of roots)x + (product of roots)
x^2 - ( m/n )x + ( 1/-n ) = 0
multiply through by n
nx^2 - mx - 1 = 0

45.

A particle of mass 3kg moving along a straight line under the action of a F N, covers a line distance, d, at time, t, such that d = t^2 + 3t. Find the magnitude of F at time t.

A.

0N

B.

2N

C.

3(2t + 3)N

D.

6N

Correct answer is D

F = m * a

d = t^2 + 3t.

a = \frac{d^2d}{dt^2}

\frac{d[d]}{dt} = 2t + 3

\frac{d^2d}{dt^2} = 2m/s^2

a = 2m/s^2


F = m * a


F = 3 × 2 = 6N