Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

596.

If \(\log_{3} x = \log_{9} 3\), find the value of x.

A.

\(3^{2}\)

B.

\(3^{\frac{1}{2}}\)

C.

\(3^{\frac{1}{3}}\)

D.

\(2^{13}\)

Correct answer is B

\(\log_{3} x = \log_{9} 3  \implies \log_{3} x = \log_{9} 9^{\frac{1}{2}} = \frac{1}{2}\log_{9} 9\)

\(\log_{3} x = \frac{1}{2} \)

\(\therefore x = 3^{\frac{1}{2}}\)

597.

Solve: \(4(2^{x^2}) = 8^{x}\)

A.

(1, 2)

B.

(1, -2)

C.

(-1, 2)

D.

(-1, -2)

Correct answer is A

\(4(2^{x^2}) = 8^{x}  \equiv (2^{2})(2^{x^2}) = (2^{3})^{x}\)

\(\implies 2^{2 + x^{2}} = 2^{3x}\)

Comparing bases, we have

\(2 + x^{2} = 3x \implies x^{2} - 3x + 2 = 0\)

\(x^{2} - 2x - x + 2 = 0 \)

\(x(x - 2) - 1(x - 2) = 0\)

\((x - 1) = 0\) or \((x - 2) = 0\)

\(x = \text{1 or 2}\)

598.

Solve: \(2\cos x - 1 = 0\)

A.

\((\frac{2\pi}{3}, \frac{4\pi}{3})\)

B.

\((\frac{\pi}{6}, \frac{5\pi}{6})\)

C.

\((\frac{\pi}{5}, \frac{2\pi}{5})\)

D.

\((\frac{\pi}{3}, \frac{5\pi}{3})\)

Correct answer is D

\(2\cos x - 1 = 0 \implies 2\cos x = 1\)

\(\cos x = \frac{1}{2}\)

\(x = \cos^{-1} (\frac{1}{2})\)

= \(\frac{\pi}{3}\) = \(\frac{5\pi}{3}\)

599.

Simplify \(\frac{1 - 2\sqrt{5}}{2 + 3\sqrt{2}}\).

A.

\(14(2\sqrt{2} + 6\sqrt{5} - 4\sqrt{10})\)

B.

\(\frac{1}{14}(2 - 3\sqrt{2} - 4\sqrt{5} - 6\sqrt{10})\)

C.

\(\frac{1}{14}(3\sqrt{2} + 4\sqrt{5} - 6\sqrt{10} - 2)\)

D.

\(14(2 + 3\sqrt{2} - 6\sqrt{5} + 4\sqrt{10})\)

Correct answer is C

\(\frac{1 - 2\sqrt{5}}{2 + 3\sqrt{2}} = (\frac{1 - 2\sqrt{5}}{2 + 3\sqrt{2}})(\frac{2 - 3\sqrt{2}}{2 - 3\sqrt{2}})\)

= \(\frac{2 - 3\sqrt{2} - 4\sqrt{5} + 6\sqrt{10}}{4 - 6\sqrt{2} + 6\sqrt{2} - 18}\)

= \(\frac{2 - 3\sqrt{2} - 4\sqrt{5} + 6\sqrt{10}}{-14}\)

= \(\frac{1}{14}(3\sqrt{2} + 4\sqrt{5} - 2 - 6\sqrt{10})\) (dividing through with the minus sign)

600.

A ball falls from a height of 18m above the ground. Find the speed with which the ball hits the ground. \([g = 10ms^{-2}]\)

A.

9\(ms^{-1}\)

B.

9.49\(ms^{-1}\)

C.

13.42\(ms^{-1}\)

D.

18.97\(ms^{-1}\)

Correct answer is D

Due to conservation of energy, K.E = P.E

\(\frac{1}{2}mv^{2} = mgh\)

\(\implies m \times 10 \times 18 = \frac{1}{2}mv^{2}\)

\(v^{2} = 2 \times 10 \times 18 = 360\)

\(v = \sqrt{360} = 18.97ms^{-1}\)