Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

601.

A man of mass 80kg stands in a lift. If the lift moves upwards with acceleration 0.5\(ms^{-2}\), calculate the reaction from the floor of the lift on the man. \([g = 10ms^{-2}]\)

A.

760N

B.

800N

C.

805N

D.

840N

Correct answer is D

\(\text{Net force = Upward force - weight}\)

\(ma = F - mg  \implies F = ma + mg \)

\(F = (80 \times 10) + (80 \times 0.5) = 800 + 40 = 840N\)

602.

A force 10N acts in the direction 060° and another force 6N acts in the direction 330°. Find the y component of their resultant force.

A.

\((3 + 3\sqrt{3})N\)

B.

\((-3 + 5\sqrt{3})N\)

C.

\((5 + 3\sqrt{3})N\)

D.

\((5 + 5\sqrt{3})N\)

Correct answer is B

\(F = F\cos \theta + F\sin \theta\) (Resolving into its components)

\(10N = 10 \cos 60, 10 \sin 60\)

\(6N = 6 \cos 330, 6 \sin 330\)

\(R = F_{1} + F_{2} = (10 \cos 60, 10 \sin 60) + (6 \cos 330, 6 \sin 330)\)

The y- component : \(10 \sin 60 + 6 \sin 330 = 10 \times \frac{\sqrt{3}}{2} + 6 \times \frac{-1}{2}\)

= \((5\sqrt{3} - 3)N\)

603.

A body of mass 10kg moving with a velocity of 5\(ms^{-1}\) collides with another body of mass 15kg moving in the same direction as the first with a velocity of 2\(ms^{-1}\). After collision, the two bodies move together with a common velocity v\(ms^{-1}\).

A.

3.2

B.

5.3

C.

7.0

D.

8.0

Correct answer is A

Momentum of bodies with common velocity = \(m_{1}v_{1} + m_{2}v_{2} = (m_{1} + m_{2})v\)

\((10 \times 5) + (15 \times 2)  = (10 + 15)v\)

\(50 + 30 = 25v \implies v = \frac{80}{25} = 3.2ms^{-1}\)

604.

Find the unit vector in the direction of \(-2i + 5j\).

A.

\(\frac{1}{\sqrt{29}}(2i + 5j)\)

B.

\(\frac{1}{\sqrt{29}}(-2i + 5j)\)

C.

\(\frac{1}{29}(2i - 5j)\)

D.

\(\frac{1}{29}(-2i - 5j)\)

Correct answer is B

The unit vector, \(\hat{n}\) is given by \(\hat{n} = \frac{\overrightarrow{r}}{|\overrightarrow{r}|}\)

= \(\frac{(-2i + 5j)}{\sqrt{(-2)^{2} + 5^{2}}} = \frac{(-2i + 5j)}{\sqrt{29}}\)

= \(\frac{1}{\sqrt{29}}(-2i + 5j)\) 

605.

Given that \(r = 3i + 4j\) and \(t = -5i + 12j\), find the acute angle between them.

A.

14.3°

B.

55.9°

C.

59.5°

D.

75.6°

Correct answer is C

\(\overrightarrow{r} . \overrightarrow{t} = |\overrightarrow{r}||\overrightarrow{t}|\cos \theta\)

\(\overrightarrow{r} . \overrightarrow{t} = (3i + 4j) . (-5i + 12j) = -15 + 48 = 33\)

\(|\overrightarrow{r}| = \sqrt{3^{2} + 4^{2}} = \sqrt{25} = 5\)

\(|\overrightarrow{t}| = \sqrt{(-5)^{2} + 12^{2}| = \sqrt{169} = 13\)

\(\cos \theta = \frac{\overrightarrow{r} . \overrightarrow{t}}{|\overrightarrow{r}||\overrightarrow{t}|}\)

 \(\cos \theta = \frac{33}{5 \times 13} = \frac{33}{65}\)

\(\theta = \cos^{-1} {\frac{33}{65}} \approxeq 59.5°\)