Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.
Find the area of the circle whose equation is given as \(x^{2} + y^{2} - 4x + 8y + 11 = 0\)
\(3\pi\)
\(6\pi\)
\(9\pi\)
\(12\pi\)
Correct answer is C
Equation of a circle: \((x - a)^{2} + (y - b)^{2} = r^{2}\)
Given that \(x^{2} + y^{2} - 4x + 8y + 11 = 0\)
Expanding the equation of a circle, we have: \(x^{2} - 2ax + a^{2} + y^{2} - 2by + b^{2} = r^{2}\)
Comparing this expansion with the given equation, we have
\(2a = 4 \implies a = 2\)
\(-2b = 8 \implies b = -4\)
\(r^{2} - a^{2} - b^{2} = -11 \implies r^{2} = -11 + 2^{2} + 4^{2} =9\)
\(r = 3\)
\(Area = \pi r^{2} = \pi \times 3^{2}\)
= \(9\pi\)
97.9°
79.7°
63.4°
36.4°
Correct answer is B
\(m . n = |m||n|\cos \theta\)
\((3i + 4j) . (2i - j) = 6 - 4 = 2\)
\(2 = |(3i + 4j)||(2i - j)| \cos \theta\)
\(|3i + 4j| = \sqrt{3^{2} + 4^{2}} = \sqrt{25} = 5\)
\(|2i - j| = \sqrt{2^{2} + (-1)^{2}} = \sqrt{5}\)
\(2 = 5(\sqrt{5})(\cos \theta)\)
\(\cos \theta = \frac{2}{5\sqrt{5}} = 0.08\sqrt{5}\)
\(\theta = \cos^{-1} 0.1788 = 79.7°\)
Given that \(\log_{2} y^{\frac{1}{2}} = \log_{5} 125\), find the value of y
16
25
36
64
Correct answer is D
\(\log_{2} y^{\frac{1}{2}} = \log_{5} 125\)
\(\log_{2} y^{\frac{1}{2}} = \log_{5} 5^{3} = 3\log_{5} 5 = 3\)
\(\log_{2} y^{\frac{1}{2}} = 3 \implies y^{\frac{1}{2}} = 2^{3} = 8\)
\(y = 8^{2} = 64\)
(1, 2)
(1, 1)
(1, -1)
(1, -2)
Correct answer is C
\(y = 4x^{3} + kx^{2} - 6x + 4\)
\(\frac{\mathrm d y}{\mathrm d x} = 12x^{2} + 2kx - 6\)
At P(1, m)
\(\frac{\mathrm d y}{\mathrm d x} = 12 + 2k - 6 = 0\) (parallel to the x- axis)
\(6 + 2k = 0 \implies k = -3\)
\(P(1, m) \implies m = 4(1^{3}) - 3(1^{2}) - 6(1) + 4)
= -1
P = (1, -1)
3
2
-3
-2
Correct answer is C
\(y = 4x^{3} + kx^{2} - 6x + 4\)
\(\frac{\mathrm d y}{\mathrm d x} = 12x^{2} + 2kx - 6\)
At P(1, m)
\(\frac{\mathrm d y}{\mathrm d x} = 12 + 2k - 6 = 0\) (parallel to the x- axis)
\(6 + 2k = 0 \implies k = -3\)