Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

296.

Given that \(\overrightarrow{AB} = 5i + 3j\) and \(\overrightarrow{AC} = 2i + 5j\), find \(\overrightarrow{BC}\). 

A.

-7i - 8j

B.

-3i + 2j

C.

3i - 2j

D.

3i + 8j

Correct answer is B

\(\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC}\)

\(\overrightarrow{BA} = - \overrightarrow{AB} = -(5i + 3j)\)

= \(-5i - 3j\)

\(\overrightarrow{BC} = (-5i - 3j) + (2i + 5j)\)

= \(-3i + 2j\)

297.

If events A and B are independent and \(P(A) = \frac{7}{12}\) and \(P(A \cap B) = \frac{1}{4}\), find P(B).

A.

\(\frac{3}{7}\)

B.

\(\frac{4}{7}\)

C.

\(\frac{5}{7}\)

D.

\(\frac{6}{7}\)

Correct answer is A

\(P(A) = \frac{7}{12}\)

\(P(A \cap B) = \frac{1}{4} = P(A) \times P(B)\) (Independent events)

\(\frac{1}{4} ÷ \frac{7}{12} = \frac{1}{4} \times \frac{12}{7} \)

= \(\frac{3}{7}\)

298.

If \(\begin{vmatrix} 4 & x \\ 5 & 3 \end{vmatrix} = 32\), find the value of x.

A.

4

B.

2

C.

-2

D.

-4

Correct answer is D

\(\begin{vmatrix} 4 & x \\ 5 & 3 \end{vmatrix} = 12 - 5x = 32\)

\(5x = 12 - 32 = -20\)

\(x = -4\)

299.

Express \(\frac{1}{1 - \sin 45°}\) in surd form. 

A.

\(2 + \sqrt{2}\)

B.

\(2 + \sqrt{3}\)

C.

\(2 - \sqrt{2}\)

D.

\(1 + 2\sqrt{2}\)

Correct answer is A

\(\sin 45 = \frac{\sqrt{2}}{2}\)

\(\frac{1}{1 - \sin 45} = \frac{1}{1 - \frac{\sqrt{2}}{2}}\)

\(\frac{2}{2 - \sqrt{2}} = \frac{4 + 2\sqrt{2}}{4 - 2}\)

= \(2 + \sqrt{2}\)

300.

Given that \(f '(x) = 3x^{2} - 6x + 1\) and f(3) = 5, find f(x).

A.

\(f(x) = x^{3} - 3x^{2} + x + 20\)

B.

\(f(x) = x^{3} - 3x^{2} + x + 31\)

C.

\(f(x) = x^{3} - 3x^{2} + x + 2\)

D.

\(f(x) = x^{3} - 3x^{2} + x - 13\)

Correct answer is C

\(f ' (x) = 3x^{2} - 6x + 1\)

\(f(x) = \int (3x^{2} - 6x + 1) \mathrm {d} x\)

= \(x^{3} - 3x^{2} + x + c\)

\(f(3) = 5 = 3^{3} - 3(3^{2}) + 3 + c\)

\(27 - 27 + 3 + c = 5 \implies 3 + c = 5\)

\(c = 2\)

\(f(x) = x^{3} - 3x^{2} + x + 2\)