Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.
6365
4865
5665
1665
Correct answer is A
sinx=45 and cosy=1213
x is obtuse i.e sin x = + ve while cos x = + ve
cosx=35==>cosx=−35(obtuse)
siny=513
sin(x−y)=sinx cosy−cosx siny
sin(x−y)=45×1213−(−35)×513
sin(x−y)=4865−(−313)
∴sin(x−y)=4865+313=6365
67
116
17
316
Correct answer is B
∫10x(x2−2)2dx
(x2−2)2=x4−2x2−2x2+4
=x4−4x2+4
x(x2−2)2=x(x4−4x2+4)
=x5−4x3+4x
∫10x(x2−2)2dx=∫10x5−4x3+4xdx
=(x66−x4+2x2)10
= ((1)66−(1)4+2(1)2)−((0)66−(0)4+2(0)2)
=76−0=76
∴116
19 ms−2
21 ms−2
41 ms−2
31 ms−2
Correct answer is C
S=5t3−192t2+6t−4
v(t)=dSdt=15t2−19t+6
a(t)=dvdt=30t−19
∴a(2)=30(2)-19=60-19=41 ms−2
Find the equation of the normal to the curve y = 3x2+2 at point (1, 5)
6y - x - 29 = 0
6y + x - 31 = 0
y - 6x - 1 = 0
y - 6x + 1 = 0
Correct answer is B
y = 3x2+2
y1=dydx=6x
Evaluating this derivative at x = 1 (since the point of interest is (1, 5)) gives us the slope of the tangent line at that point:
mtangent=y1(1)=6(1)=6
Slope of the Normal Line mnormal=−1mtangent
mnormal=−16
y−y_1= ^mnormal⋅(x−x_1)
=y-5=-\frac{1}{6}(x-1)
=y-5=-\frac{1}{6}x+\frac{1}{6}
=y=-\frac{1}{6}x+\frac{1}{6}+5
Multiply through by 6
=6y=-x+1+30
∴6y+ x - 31=0
Calculate, correct to one decimal place, the angle between 5 i + 12 j and -2 i + 3 j
56.3º
76.3º
66.4º
54.8º
Correct answer is A
Using the dot product:
a.b = |a||b|cos θ
a.b = 5(-2) + 12(3) = -10 + 36 = 26
|a| = √(52 + 122) = √(25 + 144)
|a| = √169 = 13
|b| = √((-2)^2 + 3^2) = √(4 + 9)
|b| = √13
= 26 = 13√13 x cos θ
= \frac{26}{13\sqrt13} = cos θ
=\frac{2}{\sqrt13} = cos θ
= θ = cos^{-1} (\frac{2}{\sqrt13})
∴ θ = 56.3º