Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

36.

Given that sinx=45 and cosy=1213, where x is an obtuse angle and y is an acute angle, find the value of sin (x - y).

A.

6365

B.

4865

C.

5665

D.

1665

Correct answer is A

sinx=45 and cosy=1213

x is obtuse i.e sin x = + ve while cos x = + ve

cosx=35==>cosx=35(obtuse)

siny=513

sin(xy)=sinx cosycosx siny

sin(xy)=45×1213(35)×513

sin(xy)=4865(313)

sin(xy)=4865+313=6365

37.

Evaluate 10x(x22)2dx

A.

67

B.

116

C.

17

D.

316

Correct answer is B

10x(x22)2dx

(x22)2=x42x22x2+4

=x44x2+4

x(x22)2=x(x44x2+4)

=x54x3+4x

10x(x22)2dx=10x54x3+4xdx

=(x66x4+2x2)10

= ((1)66(1)4+2(1)2)((0)66(0)4+2(0)2)

=760=76

116

38.

The distance S metres moved by a body in t seconds is given by S=5t3192t2+6t4. Calculate the acceleration of the body after 2 seconds

A.

19 ms2

B.

21 ms2

C.

41 ms2

D.

31 ms2

Correct answer is C

S=5t3192t2+6t4

v(t)=dSdt=15t219t+6

a(t)=dvdt=30t19

∴a(2)=30(2)-19=60-19=41 ms2

39.

Find the equation of the normal to the curve y = 3x2+2 at point (1, 5)

A.

6y - x - 29 = 0

B.

6y + x - 31 = 0

C.

y - 6x - 1 = 0

D.

y - 6x + 1 = 0

Correct answer is B

y = 3x2+2

y1=dydx=6x

Evaluating this derivative at x = 1 (since the point of interest is (1, 5)) gives us the slope of the tangent line at that point:
mtangent=y1(1)=6(1)=6
Slope of the Normal Line mnormal=1mtangent

mnormal=16

y−y_1​= ^mnormal⋅(x−x_1)

=y-5=-\frac{1}{6}(x-1)

=y-5=-\frac{1}{6}x+\frac{1}{6}

=y=-\frac{1}{6}x+\frac{1}{6}+5

Multiply through by 6

=6y=-x+1+30

∴6y+ x - 31=0

40.

Calculate, correct to one decimal place, the angle between 5 i + 12 j and -2 i + 3 j

A.

56.3º

B.

76.3º

C.

66.4º

D.

54.8º

Correct answer is A

Using the dot product:

a.b = |a||b|cos θ

a.b = 5(-2) + 12(3) = -10 + 36 = 26

|a| = √(52 + 122) = √(25 + 144)

|a| = √169 = 13

|b| = √((-2)^2 + 3^2) = √(4 + 9)

|b| = √13

= 26 = 13√13 x cos θ

= \frac{26}{13\sqrt13} = cos θ

=\frac{2}{\sqrt13} = cos θ

= θ = cos^{-1} (\frac{2}{\sqrt13})

∴ θ = 56.3º