How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
14\(\frac{1}{3}\)cm
12\(\frac{5}{6}\)cm
8\(\frac{1}{7}\)cm
7\(\frac{1}{3}\)cm
Correct answer is A
perimeter of minor sector
2r + \(\frac{\theta}{360} \times 2 \pi r\)
= 2 x 3.5 + \(\frac{120^o}{360^o} \times 2 \frac{22}{7} \times 3.5\)
= 7 + \(\frac{154}{21}\)
= 7 + 7.33
= 14.33
= 14\(\frac{1}{3}\)cm
33o
32o
27o
26o
Correct answer is C
tan \(\theta = \frac{opp}{adj} = \frac{6.6}{13}\)
tan \(\theta = 0.5077\)
\(\theta\) = tan-1 0.5077
\(\theta = 27^o\)
\(\frac{1}{2}\) (a + b + c)
\(\frac{1}{2}\) (a - b - c)
\(\frac{1}{2}\) (a - b + c)
\(\frac{1}{2}\) (a + b - c)
Correct answer is A
\(\frac{1}{2}\)(a - b + c) + \(\frac{1}{2}\)(a + b - c) - [\(\frac{1}{2}\) (a - b - c)]
\(\frac{1}{2}a - \frac{1}{2}b + \frac{1}{2}c + \frac{1}{2}a + \frac{1}{2}b - \frac{1}{2}c - \frac{1}{2}a + \frac{1}{2}b + \frac{1}{2}c\)
= \(\frac{1}{2}a + \frac{1}{2}b + \frac{1}{2}c\)
= \(\frac{1}{2}(a + b + c)\)
If \(\frac{2}{x - 3} - \frac{3}{x - 2}\) is equal to \(\frac{p}{(x - 3)(x - 2)}\), find p
-x - 5
-(x + 3)
5x - 13
5 - x
Correct answer is D
\(\frac{2}{x - 3} - \frac{3}{x - 2}\) = \(\frac{p}{(x - 3)(x - 2)}\)
\(\frac{2(x - 2) - 3(x - 3)}{(x - 3)(x - 2)}\) = \(\frac{p}{(x - 3)(x - 2)}\)
= \(\frac{2x - 4 - 3x + 9}{(x - 3)(x - 2)}\) = \(\frac{p}{(x - 3)(x - 2)}\)
\(\frac{-x + 5}{(x - 3)(x - 2)} = \frac{p}{(x - 3)(x - 2)}\)
p(x - 3)(x - 2) = -x + 5(x - 3)(x - 2)
p = -x + 5 or p = 5 - x
Simplify \(\frac{\sqrt{8^2 \times 4^{n + 1}}}{2^{2n} \times 16}\)
16
8
4
1
Correct answer is C
\(\frac{\sqrt{8^2 \times 4^{n + 1}}}{2^{2n} \times 16}\)
= \(\frac{\sqrt{2^{3(2)} \times 2^{2(n + 1)}}}{2^{2n} \times 2^4}\)
= \(\frac{\sqrt{2^6 \times 2^{2n + 2)}}}{2^{2n} + 4}\)
= \(\frac{\sqrt{2^6 + 2^{2n + 2)}}}{2^{2n} + 4}\)
= \(\frac{\sqrt{2^{2n + 8}}}{2^{2n} + 4}\)
= \(\sqrt{2^{2n + 8} \div 2^{2n} + 4}\)
= \(\sqrt{2^{2n - 2n} + 8 - 4}\)
= \(\sqrt{2^4}\)
= \(\sqrt{16}\)
= 4