Mathematics questions and answers

Mathematics Questions and Answers

How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.

1,131.

A chord subtends an angle of 120o at the centre of a circle of radius 3.5cm. Find the perimeter of the minor sector containing the chord, [Take \(\pi = \frac{22}{7}\)]

A.

14\(\frac{1}{3}\)cm

B.

12\(\frac{5}{6}\)cm

C.

8\(\frac{1}{7}\)cm

D.

7\(\frac{1}{3}\)cm

Correct answer is A

perimeter of minor sector

2r + \(\frac{\theta}{360} \times 2 \pi r\)

= 2 x 3.5 + \(\frac{120^o}{360^o} \times 2 \frac{22}{7} \times 3.5\)

= 7 + \(\frac{154}{21}\)

= 7 + 7.33

= 14.33

= 14\(\frac{1}{3}\)cm

1,132.

A man's eye level is 1.7m above the horizontal ground and 13m from a vertical pole. If the pole is 8.3m high, calculate, correct to the nearest degree, the angle of elevation of the top of the pole from his eyes.

A.

33o

B.

32o

C.

27o

D.

26o

Correct answer is C

tan \(\theta = \frac{opp}{adj} = \frac{6.6}{13}\)

tan \(\theta = 0.5077\)

\(\theta\) = tan-1 0.5077

\(\theta = 27^o\)

1,133.

Subtract \(\frac{1}{2}\)(a - b - c) from the sum of \(\frac{1}{2}\)(a - b + c) and \(\frac{1}{2}\)
(a + b - c)

A.

\(\frac{1}{2}\) (a + b + c)

B.

\(\frac{1}{2}\) (a - b - c)

C.

\(\frac{1}{2}\) (a - b + c)

D.

\(\frac{1}{2}\) (a + b - c)

Correct answer is A

\(\frac{1}{2}\)(a - b + c) + \(\frac{1}{2}\)(a + b - c) - [\(\frac{1}{2}\) (a - b - c)]

\(\frac{1}{2}a - \frac{1}{2}b + \frac{1}{2}c + \frac{1}{2}a + \frac{1}{2}b - \frac{1}{2}c - \frac{1}{2}a + \frac{1}{2}b + \frac{1}{2}c\)

= \(\frac{1}{2}a + \frac{1}{2}b + \frac{1}{2}c\)

= \(\frac{1}{2}(a + b + c)\)

1,134.

If \(\frac{2}{x - 3} - \frac{3}{x - 2}\) is equal to \(\frac{p}{(x - 3)(x - 2)}\), find p

A.

-x - 5

B.

-(x + 3)

C.

5x - 13

D.

5 - x

Correct answer is D

\(\frac{2}{x - 3} - \frac{3}{x - 2}\) = \(\frac{p}{(x - 3)(x - 2)}\)

\(\frac{2(x - 2) - 3(x - 3)}{(x - 3)(x - 2)}\) = \(\frac{p}{(x - 3)(x - 2)}\)

= \(\frac{2x - 4 - 3x + 9}{(x - 3)(x - 2)}\) = \(\frac{p}{(x - 3)(x - 2)}\)

\(\frac{-x + 5}{(x - 3)(x - 2)} = \frac{p}{(x - 3)(x - 2)}\)

p(x - 3)(x - 2) = -x + 5(x - 3)(x - 2)

p = -x + 5 or p = 5 - x

1,135.

Simplify \(\frac{\sqrt{8^2 \times 4^{n + 1}}}{2^{2n} \times 16}\)

A.

16

B.

8

C.

4

D.

1

Correct answer is C

\(\frac{\sqrt{8^2 \times 4^{n + 1}}}{2^{2n} \times 16}\)

= \(\frac{\sqrt{2^{3(2)} \times 2^{2(n + 1)}}}{2^{2n} \times 2^4}\)

= \(\frac{\sqrt{2^6 \times 2^{2n + 2)}}}{2^{2n} + 4}\)

= \(\frac{\sqrt{2^6 + 2^{2n + 2)}}}{2^{2n} + 4}\)

= \(\frac{\sqrt{2^{2n + 8}}}{2^{2n} + 4}\)

= \(\sqrt{2^{2n + 8} \div 2^{2n} + 4}\)

= \(\sqrt{2^{2n - 2n} + 8 - 4}\)

= \(\sqrt{2^4}\)

= \(\sqrt{16}\)

= 4