Mathematics questions and answers

Mathematics Questions and Answers

How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.

1,816.

Find the missing numerator \(\frac{5}{x + 1}\) - \(\frac{3}{1 - x}\) - \(\frac{7x - 1}{x^2 - 1}\) = \(\frac{?}{x + 1}\).

A.

-1

B.

x - 1

C.

\(\frac{3(1 - 5x)}{x + 1}\)

D.

1

E.

3(1 - 5x)

Correct answer is D

\(\frac{5}{x + 1} - \frac{3}{1 - x} - \frac{7x - 1}{x^{2} - 1} = \frac{?}{x + 1}\)

\(\frac{5(x - 1) - 3(- (x + 1)) - 7x - 1}{x^{2} - 1}\)

= \(\frac{5x - 5 + 3x + 3 - 7x - 1}{x^{2} - 1}\)

= \(\frac{x - 1}{x^{2} - 1}\)

= \(\frac{x - 1}{(x - 1)(x + 1)}\)

= \(\frac{1}{x + 1}\).

The numerator = 1.

1,817.

Simplify 102 + log105

A.

500

B.

2 log10 5

C.

10

D.

25

E.

log105 x 10100

Correct answer is E

102 + log105 = log10 10100 + log105

= log105 x 10100

1,818.

Given log 2 = 0.69, log3 = 1, 10 and log7 = 1.90, all to a fixed base, find log 10.5 to the same base without using tables.

A.

1.03

B.

2.31

C.

3.69

D.

10.5

E.

25

Correct answer is B

log 10.5 = log \(\frac{21}{2}\)

= log 21 - log 2

= log(3 x 7) - log 2

= log 3 + log 7 - log 2

= 1.10 + 1.90 - 0.69

= 3 - 0.69

= 2.31

1,819.

Solve the equation for the positive values of \(\theta\) less than 360o. 3 tan \(\theta\) + 2 = -1

A.

135o or 315o

B.

45o or 135o

C.

315o or 180o

D.

315v + 45o

E.

360o or 315o

Correct answer is A

3 tan \(\theta\) + 2 = -1

3 tan \(\theta\) \(\frac{-3}{3}\) = -1

\(\theta\) = tan -1(-1)

\(\theta\) = 360o - 45o

= 315o

\(\theta\) = 180 - 45o = 135o

1,820.

Find the area of the curved surface of a cone whose base radius is 6cm and whose height is 8cm. (take \(\pi\) = \(\frac{22}{7}\))

A.

188.57cm2

B.

1320cm2

C.

188cm2

D.

188.08cm2

E.

10cm2

Correct answer is A

S = curved surface area = \(\pi\)rL

= \(\frac{22}{7}\) x 6 x 10

= 188.57cm2