How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
If tan \(\theta\) = \(\frac{m^2 - n^2}{2mn}\) find sec\(\theta\)
\(\frac{m^2 + n^2}{(m^2 - n^2)}\)
\(\frac{m^2 + n^2}{2mn}\)
\(\frac{mn}{2(m^2 + n^2)}\)
\(\frac{m^2n^2}{2(m^2 - n^2)}\)
Correct answer is B
Tan \(\theta\) = \(\frac{m^2 - n^2}{2mn}\)
\(\frac{\text{Opp}}{\text{Adj}}\) by pathagoras theorem
= Hyp2 = Opp2 + Adj2
Hyp2 = (m2 - n2) + (2mn)2
Hyp2 = m4 - 2m2n4 - 4m2 - n2
Hyp2 = m4 + 2m2 + n2n
Hyp2 = (m2 - n2)2
Hyp2 = \(\frac{m^2 + n^2}{2mn}\)
The sine, cosine and tangent of 210o are respectively
\(\frac{1}{2}\), \(\frac{\sqrt{3}}{2}\), \(\frac{\sqrt{3}}{2}\)
\(\frac{1}{2}\), \(\frac{\sqrt{3}}{2}\), \(\frac{\sqrt{3}}{3}\)
\(\frac{1}{2}\), \(\frac{\sqrt{3}}{2}\), \(\frac{\sqrt{3}}{2}\)
\(\frac{-1}{2}\), \(\frac{\sqrt{-3}}{2}\), \(\frac{\sqrt{3}}{3}\)
Correct answer is D
210o = 180o - 210o = - 30o
From ratio of sides, sin -30o = -\(\frac{1}{2}\)
Cos 210o = 180o - 210o = -30o
= cos -30o = \(\frac{-3}{2}\)
But tan 30o = \(\frac{1}{\sqrt{3}}\), rationalizing this
= \(\frac{1}{\sqrt{3}}\) x \(\frac{\sqrt{3}}{\sqrt{3}}\) = \(\frac{\sqrt{3}}{3}\)
∴ = \(\frac{-1}{2}\), \(\frac{\sqrt{-3}}{2}\), \(\frac{\sqrt{3}}{3}\)
35o
37o
49o
59o
Correct answer is D
In PNO, ONP
= 180 - (35 + 86)
= 180 - 121
= 59°
PRQ = QNP = 59°(angles in the same segment of a circle are equal)
210o
150o
105o
50o
Correct answer is D
Sum of interior angles of any polygon is (2n - 4) right angle; n angles of the Nonagon = 9
Where 3 are equal and 6 other angles = 1110o
(2 x 9 - 4)90o = (18 - 4)90o
14 x 90o = 1260o
9 angles = 1260°; 6 angles = 110o
Remaining 3 angles = 1260o - 1110o = 150o
Size of one of the 3 angles \(\frac{150}{3}\) = 50o
Find the eleventh term of the progression 4, 8, 16.....
213
212
211
210
Correct answer is B
a = 4, r = \(\frac{4}{2}\)
\(\frac{8}{4}\) = 2
n = 11
Tn = arn - 1
T11 = 4(2)11 - 1
4(2)10 = 212
since 4 = 22
= 212