Mathematics questions and answers

Mathematics Questions and Answers

How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.

2,256.

Find the sum of the first 20 terms in an arithmetic progression whose first term is 7 and last term is 117.

A.

2480

B.

1240

C.

620

D.

124

Correct answer is B

Given the first and last term of an A.P, the sum of the terms is given by

\(S_{n} = \frac{n}{2} [a + l]\)

where a = first term; l = last term and n = number of terms.

\(\therefore S_{20} = \frac{20}{2} [7 + 117]\)

= \(10 (124)\)

= 1240

2,257.

At what value of x is the function y = x2 - 2x - 3 minimum?

A.

1

B.

-1

C.

-4

D.

4

Correct answer is A

For y = ax2 - bx + c for minimum y

\(\frac{dy}{dx}\) = 2x - 2

= \(\frac{dy}{dx}\) = 0

∴ 2x - 2 = 0

x = 1

2,258.

Find the gradient of the line passing through the points (-2, 0) and (0, -4)

A.

2

B.

-4

C.

-2

D.

4

Correct answer is C

Given (-2, 0) and (0, -4)

Gradient = \(\frac{-4 - 0}{0 - (-2)}\)

= \(\frac{-4}{2}\)

= -2

2,259.

Evaluate x2(x2 - 1)-\(\frac{1}{2}\) - (x2 - 1)\(\frac{1}{2}\)

A.

(x2 - 1)-\(\frac{1}{2}\)

B.

(x2 - 1)1

C.

(x2 - 1)

D.

(x2 - 1)-1

Correct answer is A

x2(x2 - 1)-\(\frac{1}{2}\) - (x2 - 1)\(\frac{1}{2}\) = \(\frac{x^2}{(x^2 - 1)^\frac{1}{2}}\) - \(\frac{(x^2 - 1)^\frac{1}{2}}{1}\)

= \(\frac{x^2 - (x^2 - 1)}{(x^2 - 1) ^\frac{1}{2}}\)

= \(\frac{x^2 - x^2 + 1}{(x^2 - 1)^\frac{1}{2}}\)

= (x2 - 1)-\(\frac{1}{2}\)

2,260.

Simplify \(\frac{\sqrt{1 + x} + \sqrt{x}}{\sqrt{1 + x} - \sqrt{x}}\)

A.

-2x - 2\(\sqrt{x (1 + x)}\)

B.

1 + 2x + 2\(\sqrt{x (1 + x)}\)

C.

\(\sqrt{x (1 + x)}\)

D.

1 + 2x - 2\(\sqrt{x (1 + x)}\)

Correct answer is B

\(\frac{\sqrt{1 + x} + \sqrt{x}}{\sqrt{1 + x} - \sqrt{x}}\)

= \((\frac{\sqrt{1 + x} + \sqrt{x}}{\sqrt{1 + x} - \sqrt{x}}) (\frac{\sqrt{1 + x} + \sqrt{x}}{\sqrt{1 + x} + \sqrt{x}})\)

= \(\frac{(1 + x) + \sqrt{x(1 + x)} + \sqrt{x(1 + x)} + x}{(1 + x) - x}\)

= \(\frac{1 + 2x + 2\sqrt{x(1 + x)}}{1}\)

= \(1 + 2x + 2\sqrt{x(1 + x)}\)