Mathematics questions and answers

Mathematics Questions and Answers

How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.

2,696.

A binary operation * is defined by x * y = xy. If x * 2 = 12 - x, find the possible values of x

A.

3,4

B.

3,-4

C.

-3,4

D.

-3,-4

Correct answer is B

x * y = xy
x * 2 = 12 - x

Thus by comparison,

x = x, y = 2

But x * y = x * 2

xy = 12 - x

x2 = 12 - x

x2 + x - 12 = 0

x2 + 4x - 3x - 12 = 0

x(x + 4) - 3(x + 4) = 0

(x - 3)(x + 4) = 0

x - 3 = 0 or x + 4 = 0

So x = 3 or x = -4

2,697.

What is the common ratio of the G.P. \((\sqrt{10} + \sqrt{5}) + (\sqrt{10} + 2\sqrt{5}) + ... \)?

A.

\(\sqrt{2}\)

B.

\(\sqrt{5}\)

C.

3

D.

5

Correct answer is A

Common ratio r of the G.P is

\(r = \frac{T_n + 1}{T_n} = \frac{T_2}{T_1}\)

\(r = \frac{\sqrt{10} + 2\sqrt{5}}{\sqrt{10} + \sqrt{5}}\)

\(r = \frac{\sqrt{10} + 2\sqrt{5}}{\sqrt{10} + \sqrt{5}} \times \frac{\sqrt{10} - \sqrt{5}}{\sqrt{10} - \sqrt{5}} \)

\( = \frac{(\sqrt{10})(\sqrt{10}) + (\sqrt{10})(-\sqrt{5}) + (2\sqrt{5})(\sqrt{10}) + (2\sqrt{5})(-\sqrt{5})}{(\sqrt{10})^2 - (\sqrt{5})^2}\)

\(\frac{10 - \sqrt{50} + 2\sqrt{50} - 10}{10 - 5}\)

\(\frac{\sqrt{50}}{5}\)

\(\frac{\sqrt{25 \times 2}}{5}\)

\(\frac{5\sqrt{2}}{5}\)

\(\sqrt{2}\)

2,698.

The 4th term of an A.P. is 13 while the 10th term is 31. Find the 24th term.

A.

89

B.

75

C.

73

D.

69

Correct answer is C

a + 3d = 13 .......... (1)
a + 9d = 31 .......... (2)

(2) - (1): 6d = 18

d = 18/6 = 3

From (1), a + 3(3) = 13

a + 9 = 13

a = 13 - 9 = 4

Hence,
T24 = a + 23d
T24 = 4 + 23(3)
T24 = 4 + 69
T24 = 73

2,699.

Evaluate the inequality \(\frac{x}{2} + \frac{3}{4} \leq \frac{5x}{6} - \frac{7}{12}\)

A.

\(x \geq 4\)

B.

\(x \leq 3\)

C.

\(x \geq -3\)

D.

\(x \leq -4\)

Correct answer is A

\(\frac{x}{2} + \frac{3}{4} \leq \frac{5x}{6} - \frac{7}{12}\)

\(12\frac{x}{2} + 12\frac{3}{4} \leq 12\frac{5x}{6} - 12\frac{7}{12}\)

6x + 9 \(\leq\) 10x - 7

6x - 10x \(\leq\) - 7 - 9

-4x \(\leq\) -16

-4x/-4 \(\geq\) -16/-4

x \(\geq\) 4

2,700.

What is the solution of \(\frac{x - 5}{x + 3} < -1\)?

A.

-3 < x < 1

B.

x < -3 or x > 1

C.

-3 < x < 5

D.

x < -3 or x > 5

Correct answer is A

Consider the range -3 < x < -1

= { -2, -1, 0}, for instance

When x = -2,

\(\frac{-2 - 5}{-2 + 3} < -1\)

\(\frac{-7}{1} < -1\)

When x = -1,

\(\frac{-1 - 5}{-1 + 3} < -1\)

\(\frac{-6}{2} < -1\)

= -3 < -1

When x = 0,

\(\frac{0 - 5}{0 + 3} < -1\)

\(\frac{- 5}{3} < -1\)

Hence -3 < x < 1