Mathematics questions and answers

Mathematics Questions and Answers

How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.

286.

Solve the following equation: \(\frac{2}{(2r - 1)}\) - \(\frac{5}{3}\) =  \(\frac{1}{(r + 2)}\)

A.

( -1,\(\frac{5}{2}\) )

B.

( 1, - \(\frac{5}{2}\) )

C.

( \(\frac{5}{2}\), 1 )

D.

(2,1)

Correct answer is B

\(\frac{2}{(2r - 1)}\) - \(\frac{5}{3}\) =  \(\frac{1}{(r + 2)}\)

\(\frac{2}{(2r - 1)}\) - \(\frac{1}{(r + 2)}\)  = \(\frac{5}{3}\)

The L.C.M.: (2r - 1) (r + 2) 

\(\frac{2(r + 2) - 1(2r - 1)}{(2r - 1) (r + 2)}\) = \(\frac{5}{3}\)

\(\frac{2r + 4 - 2r + 1}{ (2r - 1) (r + 2)}\) = \(\frac{5}{3}\)

cross multiply the solution

3 * 5 = (2r - 1) (r + 2) * 5

divide both sides 5

3 =  2r\(^2\) + 3r - 2 (when expanded)

collect like terms

2r\(^2\) + 3r - 2 - 3 = 0

2r\(^2\) + 3r - 5 = 0

Factors are -2r and +5r

2r\(^2\) -2r + 5r - 5 = 0

[2r\(^2\) -2r] [+ 5r - 5] = 0

2r(r-1) + 5(r-1) = 0

(2r+5) (r-1) = 0

 r = 1 or - \(\frac{5}{2}\)

287.

Find the least value of x which satisfies the equation 4x = 7(mod 9)

A.

7

B.

6

C.

5

D.

4

Correct answer is D

4x = 7 (mod 9)

4x = 7 + 9 (mod 9)

\(\frac{4x}{4} = \frac{16}{4}\) (mod 9)

x = 4

288.

In the diagram, O is the centre of the circle. If < NLM = 74\(^o\), < LMN = 39\(^o\) and < LOM = x, find the value of x. 

A.

134\(^o\)

B.

126\(^o\)

C.

113\(^o\)

D.

106\(^o\)

Correct answer is A

L\(N\)M = 180\(^o\) - (74\(^o\) + 39\(^o\)) 

180\(^o\) - 113\(^o\) 

= 67\(^o\)

L\(^O\)

M = x = 2 x 67\(^o\) 

= 134\(^o\)

289.

If (x + 2) is a factor of x\(^2\) +px - 10, find the value of P. 

A.

3

B.

-3

C.

7

D.

-7

Correct answer is B

x + 2 = 0

x -2

x\(^2\) = px - 10 = 0

(-2)\(^2\) - 2p - 10 = 0

4 - 2p - 10 = 0

\(\frac{-2p}{-2} = \frac{6}{-2}\) \(\to\) p = -3