How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
\(\frac{1}{3}\pi cm^2\)
\(\pi cm^2\)
\(3\pi cm^2\)
\(23\pi cm^2\)
\(46\pi cm^2\)
Correct answer is D
\(\frac{120\pi}{360}(R^2 - r^2)\\
\frac{1}{3}\times \pi (13^2 - 10^2)\\
\frac{1}{3}\times \pi \times 69 = 23\pi cm^2\)
The radius of a geographical globe is 60cm. Find the length of the parallel of latitude 60oN
\(66\pi cm\)
\(60\pi cm\)
\(30\pi cm\)
\(15\pi cm\)
\(6\pi cm\)
Correct answer is B
No explanation has been provided for this answer.
Given that \(\frac{6x-y}{x+2y}=2\), find the value of \(\frac{x}{y}\)
\(\frac{3}{8}\)
\(\frac{5}{8}\)
\(\frac{4}{5}\)
\(\frac{5}{4}\)
\(\frac{8}{5}\)
Correct answer is D
\(\frac{6x-y}{x+2y}=2\)
→ \((6x-y) = (x+2y)2\)
= 6x - y = 2x + 4y
Collect like terms: 6x - 2x = 4y + y
→ 4x = 5y
\(\frac{x}{y} = \frac{4}{5}\)
If h(m+n) = m(h+r) find h in terms of m, n and r
\(h=\frac{mr}{2m+n}\)
\(h=\frac{mr}{n+m}\)
\(h=\frac{m+n}{n}\)
\(h=\frac{m+n}{m}\)
\(h=\frac{mr}{n}\)
Correct answer is E
\(h(m+n) = m(h+r)\\
hm+hn=hm+mr\\
hn=mr\\
h=\frac{mr}{n}\)
solve the inequality \((Y-3)<\frac{y}{3}\)
y > -9
y < 3
y > 4
y < 9
y > 0
Correct answer is C
\((Y-3)<\frac{y}{3}\\
3y - 9 < y\\
2y< 9\\
y < 4\frac{1}{2}\)