Mathematics questions and answers

Mathematics Questions and Answers

How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.

3,796.

Simplify \(\frac{1}{\sqrt{3}+2}\) in the form \(a+b\sqrt{3}\)

A.

2 -√3

B.

-2 - √3

C.

2 + √3

D.

-2 + √3

Correct answer is A

\(\frac{1}{\sqrt{3}+2}=\frac{1}{\sqrt{3}+2}\times \frac{\sqrt{3}-2}{\sqrt{3}-2}\\=\frac{\sqrt{3}-2}{(\sqrt{3})^{2} -2^{2}}\\=\frac{\sqrt{3}-2}{3-4}=\frac{\sqrt{3}-2}{1}\\=-\sqrt{3}+2\\=2-\sqrt{3}\)

3,797.

Evaluate \(\frac{\frac{1}{10}\times\frac{2}{3}+\frac{1}{4}}{\frac{\frac{1}{2}}{\frac{3}{5}}-\frac{1}{4}}\)

A.

\(\frac{7}{12}\)

B.

\(\frac{19}{35}\)

C.

\(\frac{2}{25}\)

D.

\(\frac{19}{60}\)

Correct answer is B

\(\frac{\frac{1}{10}\times\frac{2}{3}+\frac{1}{4}}{\frac{\frac{1}{2}}{\frac{3}{5}}-\frac{1}{4}}\\Numerator \hspace{1mm}\frac{1}{10}\times\frac{2}{3}+\frac{1}{4} = \frac{1}{5}+\frac{1}{4}\\=\frac{4+15}{60}=\frac{19}{60}\\denominator\hspace{1mm}= \frac{\frac{1}{2}}{\frac{3}{5}}-\frac{1}{4}=\frac{1}{2}\times\frac{5}{3}-\frac{1}{4}\\=\frac{5}{6}-\frac{1}{4}\\=\frac{10-3}{12}\\=\frac{7}{12}\\\frac{Numerator}{denominator}=\frac{\frac{19}{60}}{\frac{7}{12}}\\=\frac{19}{60}\times\frac{12}{7}=\frac{19}{35}\)

3,798.

Given that 3√42x = 16, find the value of x

A.

4

B.

6

C.

3

D.

2

Correct answer is C

3√42x = 16
this implies that (3√42x)3 = (16)3
42x = 42*3
42x = 46
∴ 2x = 6
x = 3

3,799.

Find P, if 4516 - P7 = 3056

A.

627

B.

1167

C.

6117

D.

1427

Correct answer is B

4516 - P7 = 3056
P7 = 4516 - 3056
P7 = 1426
convert 1426 = 1 * 62 + 4 * 61 + 2 * 60
= 36 + 24 + 2
= 62
Convert 6210 to base 7
62/7 = 8 R 6
8/7 = 1 R 1
1/7 = 0 R 1
∴P7 = 1167

3,800.

If 6logx2 - 3logx3 = 3log50.2, find x.

A.

8/3

B.

4/3

C.

3/4

D.

3/8

Correct answer is C

6logx2 - 3logx3 = 3log50.2
= logx26 - 3logx33 = log5(0.2)3
= logx(64/27) = log5(1/5)3
logx(64/27) = log5(1/125)
let logx(64/27) = y
∴xy = 64/27
and log5(1/125) = y
∴ 5y = 1/125
5y = 125-1
5y = 5-3
∴ y = -3
substitute y = -3 in xy = 64/27
implies x-3 = 64/27
1/x3 = 64/27
64x3 = 27
x3 = 27/64
x3 = 3√27/64
x = 3/4