How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
Evaluate: \(\frac{0.21 \times 0.072 \times 0.00054}{0.006 \times 1.68 \times 0.063}\)
0.01286
0.01285
0.1286
0.1285
Correct answer is A
\(\frac{0.21 \times 0.072 \times 0.00054}{0.006 \times 1.68 \times 0.063}\)
= \(\frac{9 \times 10^{-10}}{7 \times 10^{-8}}\)
= \(1.2857 \times 10^{-2}\)
= \(0.012857 \approxeq 0.01286\) (to 4 s.f)
Simplify \((\sqrt{0.7} + \sqrt{70})^{2}\)
84.7
70.7
217.7
168.7
Correct answer is A
\((\sqrt{0.7} + \sqrt{70})^{2}\)
= \((\sqrt{0.7} + \sqrt{70})(\sqrt{0.7} + \sqrt{70})\)
= \(0.7 + 2\sqrt{0.7 \times 70} + 70\)
= \(0.7 + 14 + 70 \)
= 84.7
Simplify 52.4 - 5.7 - 3.45 - 1.75
41.4
41.5
42.1
42.2
Correct answer is B
52.4 - 5.7 - 3.45 - 1.75
= 52.4 - (5.7 + 3.45 + 1.75)
= 52.4 - 10.90
= 41.5
95
80
125
110
Correct answer is D
Hint: Represent the question in a venn diagram, such that
n(B ∩ M) = x
n(B) only = 125-x
n(M) only = 110-x
=> 125-x + 110-x + x = 220
=> x = 15.
n(B) only = 125 - 15 = 110
Without using tables, evaluate \((343)^{\frac{1}{3}} \times (0.14)^{-1} \times (25)^{-\frac{1}{2}}\)
10
12
8
7
Correct answer is A
\((343)^{\frac{1}{3}} \times (0.14)^{-1} \times (25)^{-\frac{1}{2}}\)
= \(\sqrt[3]{343} \times (\frac{14}{100})^{-1} \times (\sqrt{25})^{-1}\)
= \(7 \times \frac{100}{14} \times \frac{1}{5}\)
= 10.