-5
-1
4
11
Correct answer is A
\(x = -\frac{1}{2}, y = 4\\
3x^2y + xy^2\\
3\left[-\frac{1}{2}\right]^2 \times 4 \times + \left(\frac{-1}{2}\right)(4)^2\\
3\times \frac{1}{4} \times 4 -\frac{1}{2} \times 16\\
3-8 = -5\)
If P = {3, 5, 6} and Q = {4, 5, 6} then P∩Q equals ...
In the diagram, find the size of the angle marked a° ...
If x = \(\begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}\) and y = \(\begin{pmatrix} 2 & 1 ...
Solve the inequalities -6 \(\leq\) 4 - 2x < 5 - x...
If p and q are two non zero numbers and 18(p+q) = (18+p)q, which of the following must be true? ...
Triangle SPT is the solution of the linear inequalities ...
Find the maximum value of y in the equation y = 1 - 2x - 3x\(^2\) ...