If angle \(\theta\) is 135°, evaluate cos\(\theta\)
If angle \(\theta\) is 135°, evaluate cos\(\theta\)
\(\frac{1}{2}\)
\(\frac{\sqrt{2}}{2}\)
\(-\frac{\sqrt{2}}{2}\)
\(-\frac{1}{2}\)
Correct answer is C
\(\theta\) = 135°
Cos 135° = Cos(90 + 45)°
= cos90° cos45° - sin90° sin45°
= 0cos45° - (1 x \(\frac{\sqrt{2}}{2}\))
= \(-\frac{\sqrt{2}}{2}\)
Simplify \(\frac{324 - 4x^2}{2x + 18}\)...
If 0.0000152 x 0.042 = A x 108, where 1 \(\leq\) A < 10, find A and B...
An arc of circle of radius 2cm subtends an angle of 60º at the centre. Find the area of th...
If \(p\propto \frac{1}{q}\), which of the following is true?...
Solve the equation x2 - 3x - 10 = 0...
Evaluate \(\frac{2}{6-5\sqrt{3}}\) ...
If a u2 - 3v2 and b = 2uv + v2 evaluate (2a - b)(a - b2), when u = 1 and v = -1...
In the diagram O is the centre of the circle. Which of the following is/are not true? I. a = b I...
Evaluate the inequality \(\frac{x}{2} + \frac{3}{4} \leq \frac{5x}{6} - \frac{7}{12}\)...