Evaluate \(\frac{2}{6-5\sqrt{3}}\)
...Evaluate \(\frac{2}{6-5\sqrt{3}}\)
\(-\left(\frac{12}{39}-\frac{10\sqrt{3}}{39}\right)\)
\(\frac{12}{39}-\frac{10\sqrt{3}}{39}\)
\(-\left(\frac{12}{39}+\frac{10\sqrt{3}}{39}\right)\)
\(\frac{12}{39}+\frac{10\sqrt{3}}{39}\)
Correct answer is A
\(\frac{2}{6-5\sqrt{3}} = \frac{2}{6-5\sqrt{3}} \times \frac{6+5\sqrt{3}}{6+5\sqrt{3}}\\
=\frac{2(6+5\sqrt{3})}{(6-5\sqrt{3})(6+5\sqrt{3})}\\
=\frac{12+10-\sqrt{3}}{36-25(3)}\\
=\frac{12+10-\sqrt{3}}{36-75}\\
=\frac{12+10-\sqrt{3}}{-39}\\
=-\left(\frac{12}{39}-\frac{10\sqrt{3}}{39}\right)\)
Solve \(2^{5x} \div 2^x = \sqrt[5]{2^{10}}\)...
Simplify \(\frac{10}{\sqrt{32}}\)...
Find y, if \(\begin{pmatrix}5 & -6 \\2 & -7\end{pmatrix}\begin{pmatrix}x \\ y \end...
If \(\frac{1+\sqrt{2}}{1-\sqrt{2}}\) is expressed in the form of x+y√2 find the values of ...
If X \(\ast\) Y = X + Y - XY, find x when (x \(\ast\) 2) + (x \(\ast\) 3) = 68...
Solve the inequality (x - 3)(x - 4) \(\leq\) 0...
Multiply (3x + 5y + 4z) by (2x - 3y + z) ...
Arrange \(\frac{3}{5}\),\(\frac{9}{16}\), \(\frac{34}{59}\) and \(\frac{71}{97}\) in ascending ...