If 1+√21−√2 is expressed in the ...
If 1+√21−√2 is expressed in the form of x+y√2 find the values of x and y
(-3, -2)
(-2, 3)
(3,2)
(2,-3)
Correct answer is A
\frac{1+\sqrt{2}}{1-\sqrt{2}} \times \frac{1+\sqrt{2}}{1+\sqrt{2}}\\ =\frac{1+(1+\sqrt{2})+\sqrt{2}(1+\sqrt{2})}{1^2 - (\sqrt{2})^2}\\ =\frac{(1+\sqrt{2}+\sqrt{2}+2)}{1-2}\\ =\frac{3+2\sqrt{2}}{-1}\\ =-3-2\sqrt{2}\\ ∴X and Y = -3 and -2
Marks 0 1 2 3 4 5 Frequency 7 4 18 12 8 11 The table gives the distrib...
Make 'n' the subject of the formula if w = \frac{v(2 + cn)}{1 - cn}...
Simplify log_7 8 - log_7 2 + log_7 4....
Given that t = 2 ^{-x}, find 2 ^{x + 1} in terms of t. ...
If α and β are the roots of the equation 3x2 + 5x - 2 = 0, find the value of 1/&alph...
Let f(x) = 2x + 4 and g(x) = 6x + 7 here g(x) > 0. Solve the inequality \frac{f(x)}{g(x)} < 1...
The slope of the tangent to the curve y = 3x^2 - 2x + 5 at the point (1, 6) is ...