If 1+√21−√2 is expressed in the ...
If 1+√21−√2 is expressed in the form of x+y√2 find the values of x and y
(-3, -2)
(-2, 3)
(3,2)
(2,-3)
Correct answer is A
\frac{1+\sqrt{2}}{1-\sqrt{2}} \times \frac{1+\sqrt{2}}{1+\sqrt{2}}\\ =\frac{1+(1+\sqrt{2})+\sqrt{2}(1+\sqrt{2})}{1^2 - (\sqrt{2})^2}\\ =\frac{(1+\sqrt{2}+\sqrt{2}+2)}{1-2}\\ =\frac{3+2\sqrt{2}}{-1}\\ =-3-2\sqrt{2}\\ ∴X and Y = -3 and -2
Find the integral values of x and y satisfying the inequality 3y + 5x \leq 15, given that y >...
Without using tables, evaluate (343)^{\frac{1}{3}} \times (0.14)^{-1} \times (25)^{-\frac{1}{2}}...
Simplify 1\frac{1}{2} + 2\frac{1}{3} \times \frac{3}{4} - \frac{1}{2}...
Simplify \frac{x}{x + y} + \frac{y}{x - y} - \frac{x^2}{x^2 - y^2}...
The operation * on the set R of real number is defined by x * y = 3x + 2y − 1, find 3* −...
The shaded area represents ...
A chord of a circle radius \sqrt{3cm} subtends an angle of 60° on the circumference of ...