12 : 15 : 10
12 : 15 : 16
10 : 15 : 24
9 : 10 : 15
Correct answer is A
If p : q = \(\frac{2}{3}\) : \(\frac{5}{6}\), then the sum S1 of ratio = \(\frac{2}{3}\) + \(\frac{5}{6}\) = \(\frac{9}{6}\)
If q : r = \(\frac{3}{4}\) : \(\frac{1}{2}\), then the sum S2 of ratio = \(\frac{3}{4}\) + \(\frac{1}{2}\) = \(\frac{5}{4}\)
Let p + q = T1, then
q = (\(\frac{5}{6} \div \frac{9}{6}\))T1 = (\(\frac{5}{6} \times \frac{6}{9}\))T1 = \(\frac{5}{9}\)T1
Again, let q + r = T2, then
q = (\(\frac{3}{4} \div \frac{5}{4}\))T2 = (\(\frac{3}{4} \times \frac{4}{5}\))T2 = \(\frac{3}{5}\)T2
Using q = q
\(\frac{5}{9}\)T1 = \(\frac{3}{5}\)T2
5 x 5T1 = 9 x 3T2
\(\frac{T_1}{T_2}\) = \(\frac{9 \times 3}{5 x 5}\) = \(\frac{27}{25}\)
Giving that, T1 = 27 and T2 = 25
P = (\(\frac{2}{3} \div S_1\))T1 = (\(\frac{2}{3} \div \frac{9}{6}\))T1
= (\(\frac{2}{3} \times \frac{6}{9}\))27 = 12
q = (\(\frac{5}{6} \div S_1\))T1 = (\(\frac{5}{6} \div \frac{9}{6}\))T1
= (\(\frac{5}{6} \times \frac{6}{9}\))27 = 15
and r = (\(\frac{1}{2} \div S_2\))T2 = (\(\frac{1}{2} \div \frac{5}{4}\))T2
= (\(\frac{1}{2} \times \frac{4}{5}\))25 = 10
Hence p : q : r = 12: 15 : 10
The angles of a quadrilateral are (x + 10)o, 2yo, 90o and (100 - y)o, Find y in terms of x...
If 27\(^{x + 2}\) \(\div\) 9\(^{x + 1}\) = 3\(^{2x}\), find x....
Simplify \(\sqrt{\frac{(0.0023 \times 750)}{(0.00345 \times 1.25)}}\) ...
The interior angles of a quadrilateral are (x + 15)°, (2x - 45)°, ( x - 30)° and (x...