\(\frac{x - x^2}{x^4}\) + k
\(\frac{4}{x^4} - \frac{3 + k}{x^3}\)
\(\frac{1}{x} - \frac{1}{2x^2}\) + k
\(\frac{1}{3x^2} - \frac{1}{2x}\) + k
Correct answer is C
\(\int \frac{1 - x}{x^3}\)
= \(\int^{1}_{x^3} - \int^{x}_{x^3}\)
= x-3 dx - x-2dx
= \(\frac{1}{2x^2} + \frac{1}{x}\)
Simplify: \(\sqrt{12} ( \sqrt{48} - \sqrt{3}\))...
If m * n = n - (m+2) for any real number m and n find the value of 3*(-5)? ...
Find the acute angle between the straight lines y = x and y = √3x ...
Factorize completely ac - 2bc - a + 4b2 ...
The diagram shows a circle O. If < ZYW = 33\(^o\) , find < ZWX ...