\(\frac{\sqrt{5}}{2}\)
\(\frac{\sqrt{5}}{20}\)
\(\frac{5}{\sqrt{13}}\)
6
Correct answer is A
2x - 4y + 3 = 0
Required distance = \(\frac{(2 \times 2) + 3(-4) + 3}{\sqrt{2^2} + (-4)^2}\)
= \(\frac{4 - 12 + 3}{\sqrt{20}}\)
= \(\frac{-5}{-2\sqrt{5}}\)
= \(\frac{\sqrt{5}}{2}\)
Simplify: \((2\frac{1}{6} - 1\frac{2}{3}) \div 2\frac{2}{3}\)....
If (K2)\(_6\) * 3\(_6\) = 3\(_5\)(K4)\(_5\), what is the value of k?...
Solve the equation 2x - 3y = 22; 3x + 2y = 7...
Evaluate correct to 4 decimal places 827.51 x 0.015 ...
Evaluate \(\int^{2}_{0}(x^3 + x^2)\)dx....
If y = x sin x, find \(\frac{\delta y}{\delta x}\)...
Given that log\(_3\) 27 = 2x + 1, find the value of x....
A chord of a circle subtends an angle of 120° at the centre of a circle of diameter \(4\sqr...