- \(\frac{1}{2}\sqrt{5}\)
\(\frac{1}{2}\sqrt{5}\)
-- \(\frac{1}{4}\sqrt{5}\)
5
Correct answer is B
\(\frac{1}{1 + \sqrt{5}}\) - \(\frac{1}{1 - \sqrt{5}}\)
= \(\frac{1 - \sqrt{5} - 1 - \sqrt{5}}{(1 + \sqrt{5}) (1 - \sqrt{5}}\)
= \(\frac{-2\sqrt{5}}{1 - 5}\)
= \(\frac{-2\sqrt{5}}{- 4}\)
= \(\frac{1}{2}\sqrt{5}\)
In the diagram above, O is the center of the circle and ∠POR = 126°. Find ∠PQR ...
The sum of the first n terms of the arithmetic progression 5, 11, 17, 23, 29, 35, ... is? ...
Find the minimum value of X2 - 3x + 2 for all real values of x...
In the diagram above, |QR| = 12cm and |QS| = 10cm. If ∠PQR = 90°, ∠RSQ = 90° an...
Solve the equation x\(^2\) - 2x - 3 = 0...