3k2
2k - k2
\(\frac{3b^2k^2 - bk^2d + dk^2}{3b^2 - bd + d^2}\)
k2
Correct answer is C
\(\frac{a}{c}\) = \(\frac{c}{d}\) = k
∴ \(\frac{a}{b}\) = bk
\(\frac{c}{d}\) = k
∴ c = dk
= \(\frac{3a^2 - ac + c^2}{3b^2 - bd + d^2}\)
= \(\frac{3(bk)^2 - (bk)(dk) + dk^2}{3b^2 - bd + a^2}\)
= \(\frac{3b^2k^2 - bk^2d + dk^2}{3b^2 - bd + d^2}\)
k = \(\frac{3b^2k^2 - bk^2d + dk^2}{3b^2 - bd + d^2}\)
Subtract (-y + 3x + 5z) from (4y - x - 2z)...
In an acute angle-triangle XYZ, XZ = 9cm, YZ = 11cm and ∠XZY = 35° Calculate ∠YXZ, corre...
Differentiate \(\frac{x}{cosx}\) with respect to x...
Simplify \(\frac{\sqrt{2}}{\sqrt{3} - \sqrt{2}}\) - \(\frac{3 - 2}{\sqrt{3} + \sqrt{2}}\)...
In the diagram |XY| = 12cm, |XZ| = 9cm, |ZN| = 3cm and ZY||NM, calculate |MY| ...
p = \(\begin{vmatrix} x & 3 & 0 \\ 2 & y & 3\\ 4 & 2 & 4 \end{vmatrix}\) Q = \(\begin{vmatrix} x ...
If x : y = \(\frac{1}{4} : \frac{3}{8}\) and y : z = \(\frac{1}{3} : \frac{4}{9}\), find x : z...