\(\frac{\sqrt{b^2 - a^2}}{b}\)
1\(\frac{-a}{b}\)
\(\frac{b^2 - a^2}{b}\)
\(\frac{a^2 - b^2}{b}\)
\(\sqrt{b^2 - a^3}\)
Correct answer is A
\(\sin x = \frac{a}{b}\)
\(\sin^{2} x + \cos^{2} x = 1\)
\(\sin^{2} x = \frac{a^{2}}{b^{2}}\)
\(\cos^{2} x = 1 - \frac{a^{2}}{b^{2}} = \frac{b^{2} - a^{2}}{b^{2}}\)
\(\therefore \cos x = \frac{\sqrt{b^{2} - a^{2}}}{b}\)
\(\sin (90 - x) = \sin 90 \cos x - \cos 90 \sin x\)
= \((1 \times \frac{\sqrt{b^{2} - a^{2}}}{b}) - (0 \times \frac{a}{b})\)
= \(\frac{\sqrt{b^{2} - a^{2}}}{b}\)
If sin θ = \(\frac{\sqrt{3}}{2}\) and 0 < θ < 180°, what is cos θ ?...
In the figure, AB is parallel to CD then x + y + z is ...
Evaluate; \(\frac{\log_3 9 - \log_2 8}{\log_3 9}\) ...
Express 3 - [\(\frac{x - y}{y}\)] as a single fraction...
Change 432\(_{five}\) to a number in base three....
Express \(\frac{1}{x + 1}\) - \(\frac{1}{x - 2}\) as a single algebraic fraction...