27
9
\(\frac{1}{27}\)
18
81
Correct answer is A
\((\log_{3} x)^{2} - 6(\log_{3} x) + 9 = 0\)
Let \(\log_{3} x = a\).
\(a^{2} - 6a + 9 = 0\)
\(a^{2} - 3a - 3a + 9 = 0\)
\(a(a - 3) - 3(a - 3) = 0\)
\((a - 3)(a - 3) = 0\)
\(\implies a = 3 (twice)\)
\(\log_{3} x = 3 \implies x = 3^{3} = 27\)
If 3\(^y\) = 243, find the value of y....
Simplify \(\frac{\sqrt{1 + x} + \sqrt{x}}{\sqrt{1 + x} - \sqrt{x}}\)...
Given that x > y and 3 < y, which of the following is/are true? i. y > 3 ii. x < 3 iii. ...
If sec\(^2\) \(\theta\) + tan\(^2\) \(\theta\) = 3, then the angle \(\theta\) is equal to...
Find the acute angle between the straight lines y = x and y = √3x ...
In the diagram above, ∠PQU=36°, ∠QRT = 29°, PQ||RT. Find ∠PQR ...