150o
140o
130o
120o
Correct answer is A
< TUW = 110o = 180o (< s on a straight line)
< TUW = 180o - 110o = 70o
In △ XTU, < XUT + < TXU = 180o
i.e. < YTS + 70o = 180
< XTU = 180 - 110o = 70o
Also < YTS + < XTU = 180 (< s on a straight line)
i.e. < YTS + < XTU - 180(< s on straight line)
i.e. < YTS + 70o = 180
< YTS = 180 - 70 = 110o
in △ SYT + < YST + < YTS = 180o(Sum of interior < s)
SYT + 40 + 110 = 180
< SYT = 180 - 150 = 30
< SYT = < XYW (vertically opposite < s)
Also < SYX = < TYW (vertically opposite < s)
but < SYT + < XYW + < SYX + < TYW = 360
i.e. 30 + 30 + < SYX + TYW = 360
but < SYX = < TYW
60 + 2(< TYW) = 360
2(< TYW) = 360o - 60
2(< TYW) = 300o
TYW = 3002 = 150o
< SYT
Find the value of y if 402y=102ten...
If 6Pr = 6, find the value of 6Pr+1...
In the diagram above. |AB| = 12cm, |AE| = 8cm, |DCl = 9cm and AB||DC. Calculate |EC| ...
Find the range of values of x for which 1x > 2 is true...
Find the smallest number by which 252 can be multiplied to obtain a perfect square ...
In diagram above, QR//TU, < PQR = 80° and < PSU = 95°. Calculate < SUT. ...
Find the value of log10 r + log10 r2 + log10 r4 + log10 r8 + log10 r16 + log10 r32 = 63...