K = \(\frac{H(T^2 - 1)}{T^2 - T}\)
K = \(\frac{HT}{(T - 1)^2}\)
K = \(\frac{H(T^2 + 1)}{T}\)
K = \(\frac{H(T - 1)}{T}\)
Correct answer is A
T = \(\sqrt{\frac{TK - H}{K - H}}\)
Taking the square of both sides, give
T2 = \(\frac{TK - H}{K - H}\)
T2(K - H) = TK - H
T2K - T2H = TK - H
T2K - TK = T2H - H
K(T2 - T) = H(T2 - 1)
K = \(\frac{H(T^2 - 1)}{T^2 - T}\)
The solution of the equation x2 - 2x = 8 is...
Find the range of 1/6, 1/3, 3/2, 2/3, 8/9 and 4/3 ...
Factorize x\(^2\) + 4x - 192 ...
Evaluate (x + \(\frac{1}{x}\) + 1)2 - (x + \(\frac{1}{x}\) + 1)2...
Factorize \(x^2 + 2a + ax + 2x\)...
If log102 = 0.3010 and log103 = 0.4771, simplify: (Log108-log92) รท (Log109 - log102)...