\(2x^{2} - \frac{1}{x} + k\)
\(-\frac{1}{2x^{2}} - \frac{1}{x} + k\)
\(-\frac{x^{2}}{2} - \frac{1}{x} + k\)
\(x^{2} - \frac{1}{x} + k\)
Correct answer is B
\(\int \frac{1 + x}{x^{3}} \mathrm d x\)
= \(\int (\frac{1}{x^{3}} + \frac{x}{x^{3}}) \mathrm d x\)
= \(\int (x^{-3} + x^{-2}) \mathrm d x\)
= \(\frac{-1}{2x^{2}} - \frac{1}{x} + k\)
In the diagram above, O is the center of the circle of radius 3.5cm, ∠POQ = 60°. What i...
Solve the equation 10-3x-x2 = 0...
Simplify \(\frac{3}{2x - 1}\) + \(\frac{2 - x}{x - 2}\)...
A car dealer bought a second-hand car for 250,000 and spent N 70,000 refurbishing it. He then s...
If \(\frac{1+\sqrt{2}}{1-\sqrt{2}}\) is expressed in the form of x+y√2 find the values of ...
PQRSTW is a regular hexagon and QS intersects RT at V. Calculate ∠TVS ...