\(\frac{130}{221}\)
\(\frac{140}{221}\)
\(\frac{140}{204}\)
\(\frac{220}{23}\)
Correct answer is B
\(\cos(x+y) = \cos x\cos y - \sin x\sin y\)
Given \(\sin\) of an angle implies we have the value of the opposite and hypotenuse of the right-angled triangle. We find the adjacent side using Pythagoras' theorem.
\(Adj^{2} = Hyp^{2} - Opp^{2}\)
For triangle with angle x, \(adj = \sqrt{13^{2} - 5^{2}} = \sqrt{144} = 12\)
For triangle with angle y, \(adj = \sqrt{17^{2} - 8^{2}} = \sqrt{225} = 15\)
\(\therefore \cos x = \frac{12}{13}; \cos y = \frac{15}{17}\)
\(\cos(x+y) = (\frac{12}{13}\times\frac{15}{17}) - (\frac{5}{13}\times\frac{8}{17}) = \frac{180}{221} - \frac{40}{221}\)
= \(\frac{140}{221}\)
If \(\sin\theta = \frac{3}{5}, 0° < \theta < 90°\), evaluate \(\cos(180 - \theta)\)....
Solve: 4sin\(^2\)θ + 1 = 2, where 0º < θ < 180º...
Solve: \(\sin \theta = \tan \theta\)...
g(x) = 2x + 3 and f(x) = 3x\(^2\) - 2x + 4 find f {g (-3)}....
Given that \(\frac{\mathrm d y}{\mathrm d x} = \sqrt{x}\), find y....