1
2
3
4
Correct answer is C
\(\begin{vmatrix} k & k \\ 4 & k \end{vmatrix} + \begin{vmatrix} 2 & 3 \\ -1 & k \end{vmatrix} = 6\)
\(\begin{vmatrix} k & k \\ 4 & k \end{vmatrix} = (k^{2} - 4k)\)
\(\begin{vmatrix} 2 & 3 \\ -1 & k \end{vmatrix} = (2k + 3)\)
\(\therefore (k^{2} - 4k) + (2k + 3) = k^{2} - 2k + 3 = 6\)
\(k^{2} - 2k - 3 = 0\), factorising, we have \(k + 1 = 0\) or \(k - 3 = 0\)
Since k > 0, k = 3.
In how many ways can 8 persons be seated on a bench if only three seats are available? ...
Age in years 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 Frequency 6 8 14 10 12 ...
If P = \({n^{2} + 1: n = 0,2,3}\) and Q = \({n + 1: n = 2,3,5}\), find P\(\cap\) Q....
Simplify \(\sqrt[3]{\frac{8}{27}} - (\frac{4}{9})^{-\frac{1}{2}}\)...
Find the nth term of the linear sequence (A.P) (5y + 1), ( 2y + 1), (1- y),... ...
Given that \(P = \begin{pmatrix} 3 & 4 \\ 2 & x \end{pmatrix}; Q = \begin{pmatrix} 1 & 3...
Find the number of different arrangements of the word IKOTITINA. ...