\(\frac{8}{3}\)
\(\frac{7}{3}\)
\(\frac{5}{3}\)
2
Correct answer is A
\(\int_{-1}^{1} (x + 1)^{2}\mathrm {d} x \equiv \int_{-1}^{1} (x^{2} + 2x + 1)\mathrm {d} x\)
= \(\left. \frac{x^{3}}{3} + x^{2} + x \right |_{-1}^{1}\)
= \((\frac{1^{3}}{3} + 1^{2} + 1) - (\frac{(-1)^{3}}{3} + (-1)^{2} + (-1)) = \frac{7}{3} + \frac{1}{3} = \frac{8}{3}\)
If the polynomial \(f(x) = 3x^{3} - 2x^{2} + 7x + 5\) is divided by (x - 1), find the remainder....
Find the constant term in the binomial expansion \((2x^{2} + \frac{1}{x})^{9}\)...
A binary operation ∆ is defined on the set of real numbers R, by x∆y = \(\sqrt{x+y - \frac{xy}{4...
Given that \(P = \begin{pmatrix} -2 & 1 \\ 3 & 4 \end{pmatrix}\) and \(Q = \begin{pmatrix} 5...
Find \(\int \frac{x^{3} + 5x + 1}{x^{3}} \mathrm {d} x\)...
If \(\begin{vmatrix} k & k \\ 4 & k \end{vmatrix} + \begin{vmatrix} 2 & 3 \\...
If\((\frac{1}{9})^{2x-1} = (\frac{1}{81})^{2-3x}\)find the value of x...
If V = plog\(_x\), (M + N), express N in terms of X, P, M and V...