20
21
22
23
Correct answer is D
\(T_{n} = a + (n - 1)d\) (for a linear or arithmetic progression)
Given: \(T_{n} = 71, a = -6, d = -2\frac{1}{2} - (-6) = 3\frac{1}{2}\)
\(\implies 71 = -6 + (n - 1)\times 3\frac{1}{2}\)
\(71 = -6 + 3\frac{1}{2}n - 3\frac{1}{2} = -9\frac{1}{2} + 3\frac{1}{2}n\)
\(71 + 9\frac{1}{2} = 3\frac{1}{2}n \implies n = \frac{80\frac{1}{2}}{3\frac{1}{2}}\)
\(= 23\)
Two forces \(F_{1} = (10N, 020°)\) and \(F_{2} = (7N, 200°)\) act on a particle. Find the re...
Differentiate \(\frac{x}{x + 1}\) with respect to x. ...
If a fair coin is tossed four times, what is the probability of obtaining at least one head? ...
If \(log_{y}\frac{1}{8}\) = 3, find the value of y....
If y = (5 - x)\(^{-3}\), and \(\frac{dy}{dx}\)...
If \(P = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}\), find \((P^{2} + P)\)....