20
21
22
23
Correct answer is D
\(T_{n} = a + (n - 1)d\) (for a linear or arithmetic progression)
Given: \(T_{n} = 71, a = -6, d = -2\frac{1}{2} - (-6) = 3\frac{1}{2}\)
\(\implies 71 = -6 + (n - 1)\times 3\frac{1}{2}\)
\(71 = -6 + 3\frac{1}{2}n - 3\frac{1}{2} = -9\frac{1}{2} + 3\frac{1}{2}n\)
\(71 + 9\frac{1}{2} = 3\frac{1}{2}n \implies n = \frac{80\frac{1}{2}}{3\frac{1}{2}}\)
\(= 23\)
If \(y = 4x - 1\), list the range of the domain \({-2 \leq x \leq 2}\), where x is an integer....
If \(2\log_{4} 2 = x + 1\), find the value of x....
A stone is thrown vertically upward and distance, S metres after t seconds is given by S = 12t ...
Evaluate\({1_0^∫} x^2(x^3+2)^3\)...
Simplify: \((1 - \sin \theta)(1 + \sin \theta)\)...
If \(4x^{2} + 5kx + 10\) is a perfect square, find the value of k...
A fair coin is tossed 3 times. Find the probability of obtaining exactly 2 heads. ...