\(\frac{n(n-r)}{r}\)
\(\frac{n}{r(n-r)}\)
\(\frac{1}{r(n-r)}\)
\(\frac{n+1-r}{r}\)
Correct answer is D
\(^{n}C_{r} = \frac{n!}{(n-r)! r!}\)
\(^{n}C_{r - 1} = \frac{n!}{(n - (r - 1))! (r - 1)!}\)
\(^{n}C_{r} ÷ ^{n}C_{r - 1} = \frac{n!}{(n - r)! r!} ÷ \frac{n!}{(n-(r-1))!(r-1)!}\)
= \(\frac{n!}{(n-r)! r!} \times \frac{(n-(r-1)! (r-1)!}{n!}\)
= \(\frac{(n + 1 - r)! (r - 1)!}{(n - r)! r!}\)
= \(\frac{(n+1-r)(n-r)! (r-1)!}{(n-r)! r (r - 1)!}\)
= \(\frac{n + 1 - r}{r}\)
If \(y^{2} + xy - x = 0\), find \(\frac{\mathrm d y}{\mathrm d x}\)....
A linear transformation T is defined by T: (x,y) → (3x - y, x + 4y). Find the image of (2, -1) ...
If \(P = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}\), find \((P^{2} + P)\)....
The angle of a sector of a circle is 0.9 radians. If the radius of the circle is 4cm, find the ...
The sum, \(S_{n}\), of a sequence is given by \(S_{n} = 2n^{2} - 5\). Find the 6th term...