\(\frac{n(n-r)}{r}\)
\(\frac{n}{r(n-r)}\)
\(\frac{1}{r(n-r)}\)
\(\frac{n+1-r}{r}\)
Correct answer is D
\(^{n}C_{r} = \frac{n!}{(n-r)! r!}\)
\(^{n}C_{r - 1} = \frac{n!}{(n - (r - 1))! (r - 1)!}\)
\(^{n}C_{r} ÷ ^{n}C_{r - 1} = \frac{n!}{(n - r)! r!} ÷ \frac{n!}{(n-(r-1))!(r-1)!}\)
= \(\frac{n!}{(n-r)! r!} \times \frac{(n-(r-1)! (r-1)!}{n!}\)
= \(\frac{(n + 1 - r)! (r - 1)!}{(n - r)! r!}\)
= \(\frac{(n+1-r)(n-r)! (r-1)!}{(n-r)! r (r - 1)!}\)
= \(\frac{n + 1 - r}{r}\)
Evaluate \(\int_{1}^{2} (2 + 2x - 3x^{2}) \mathrm {d} x\)....
If \(\sin\theta = \frac{3}{5}, 0° < \theta < 90°\), evaluate \(\cos(180 - \theta)\)....
From the diagram above, which of the following represents the vector V in component form? ...
Find the derivative of \(\sqrt[3]{(3x^{3} + 1}\) with respect to x....
Which of the following binary operations is not commutative? ...
Given that M = \(\begin{pmatrix} 3 & 2 \\ -1 & 4 \end{pmatrix}\) and N = ...