\(\frac{-(2x + y)}{x}\)
\(\frac{(2x - y)}{x}\)
\(\frac{-x}{2x + y}\)
\(\frac{(2x + y)}{x}\)
Correct answer is A
\(\frac{\mathrm d}{\mathrm d x}(x^2 + xy - 5) = \frac{\mathrm d (x^{2})}{\mathrm d x} + \frac{\mathrm d (xy)}{\mathrm d x} - \frac{\mathrm d (5)}{\mathrm d x} = 0\)
= \(2x + x\frac{\mathrm d y}{\mathrm d x} + y = 0\)
\(\implies x\frac{\mathrm d y}{\mathrm d x} = -(2x + y)\)
\(\frac{\mathrm d y}{\mathrm d x} = \frac{-(2x + y)}{x}\)
Given that \(f(x) = \frac{x+1}{2}\), find \(f^{1}(-2)\)....
The midpoint of M(4, -1) and N(x, y) is P(3, -4). Find the coordinates of N. ...
Evaluate \(4p_2 + 4C_2 - 4p_3\)...
The angle of a sector of a circle is 0.9 radians. If the radius of the circle is 4cm, find the ...
Consider the following statement: x: All wrestlers are strong y: Some wresters are not weightl...
A particle is acted upon by two forces 6N and 3N inclined at an angle of 120° to each other. Fin...