2 + \sqrt{3}
1 + \sqrt{3}
\sqrt{3} - 1
2 - \sqrt{3}
Correct answer is D
\tan 15 = \tan (60 - 45)
\tan (x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}
\tan (60 - 45) = \frac{\tan 60 - \tan 45}{1 + \tan 60 \tan 45}
= \frac{\sqrt{3} - 1}{1 + (\sqrt{3} \times 1)}
= \frac{\sqrt{3} - 1}{1 + \sqrt{3}}
Rationalizing by multiplying denominator and numerator by 1 - \sqrt{3},
\tan 15 = 2 - \sqrt{3}
If n items are arranged two at a time, the number obtained is 20. Find the value of n. ...
Find the range of values of x for which 2x^2 + 7x - 15 ≥ 0....
If \frac{15 - 2x}{(x+4)(x-3)} = \frac{R}{(x+4)} \frac{9}{7(x-3)}, find the value of...
If g : r \to 5 - 2r, r is a real number, find the image of -3...
Given that y^2 + xy = 5,find \frac{dy}{dx}...
If f(x) = x^{2} and g(x) = \sin x, find g o f....
Simplify 8^{n} \times 2^{2n} \div 4^{3n}...
Simplify \frac{\sqrt{3} + \sqrt{48}}{\sqrt{6}}...
In what interval is the function f : x -> 2x - x^2 increasing? ...