\(2 + \sqrt{3}\)
\(1 + \sqrt{3}\)
\(\sqrt{3} - 1\)
\(2 - \sqrt{3}\)
Correct answer is D
\(\tan 15 = \tan (60 - 45)\)
\(\tan (x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}\)
\(\tan (60 - 45) = \frac{\tan 60 - \tan 45}{1 + \tan 60 \tan 45}\)
= \(\frac{\sqrt{3} - 1}{1 + (\sqrt{3} \times 1)}\)
= \(\frac{\sqrt{3} - 1}{1 + \sqrt{3}}\)
Rationalizing by multiplying denominator and numerator by \(1 - \sqrt{3}\),
\(\tan 15 = 2 - \sqrt{3}\)
Given that \(P = \begin{pmatrix} 4 & 9 \end{pmatrix}\) and \(Q = \begin{pmatrix} -1 & -2 \\ ...
What is the coordinate of the centre of the circle \(5x^{2} + 5y^{2} - 15x + 25y - 3 = 0\)?...
Resolve \(\frac{3x - 1}{(x - 2)^{2}}, x \neq 2\) into partial fractions....
Evaluate \(\int_{-1}^{1} (x + 1)^{2}\mathrm {d} x\). ...
A particle is acted upon by two forces 6N and 3N inclined at an angle of 120° to each other. Fin...
If Un = kn\(^2\) + pn, U\(_1\) = -1, U\(_5\) = 15, find the values of k and p....
In how many ways can the letters of the word MEMBER be arranged? ...