\(\frac{-1}{33}\)(6 + √3)
\(\frac{-1}{33}\)(6 - √3)
\(\frac{1}{33}\)(6 + √3)
\(\frac{1}{33}\)(6 - √3)
Correct answer is C
( \(\frac{1}{2 - √3}\) + \(\frac{2}{2 + √3}\) )\(^{-1}\)
= \(\frac{2 + √3 + 2(2 - √3)}{(2 - √3)(2 + √3)}\)
= 2 + √3 + 4 - 2√3
= (6 - √3)\(^{-1}\)
= \(\frac{1}{6 - √3}\)
= \(\frac{6 + √3}{6 - √3 * 6 + √3}\)
= \(\frac{6 + √3}{33}\)
Three forces, F\(_1\) (8N, 030°), F\(_\2) (10N, 150° ) and F\(_\3) ( KN, 240° ...
Find the minimum value of \(y = x^{2} + 6x - 12\)....
Calculate the distance between points (-2, -5) and (-1, 3) ...
P, Q, R, S are points in a plane such that PQ = 8i - 5j, QR = 5i + 7j, RS = 7i + 3j and PS = x...
Given that \(p = 4i + 3j\), find the unit vector in the direction of p....
\(f(x) = p + qx\), where p and q are constants. If f(1) = 7 and f(5) = 19, find f(3)....