-8
-5
-4
-3
Correct answer is B
\(\begin{vmatrix} 2 & -3 \\ 1 & 4 \end{vmatrix} \begin{vmatrix} -6 \\ k \end{vmatrix} \begin{vmatrix} 3 \\ -26 \end{vmatrix} = 15\)
\(\begin{vmatrix} 2[-6] & - 3k \\ 1[-6] & + 4k \end{vmatrix} = \begin{vmatrix} 3 \\ -26 \end{vmatrix}\)
\(\begin{vmatrix} -12 & - 3k \\ -6 & + 4k \end{vmatrix} = \begin{vmatrix} 3 \\ -26 \end{vmatrix}\)
-12 - 3k = 3
-3k = 3 + 12
k = \(\frac{15}{-3}\)
k = -5
Find the area of the circle whose equation is given as \(x^{2} + y^{2} - 4x + 8y + 11 = 0\)...
Find the coordinates of the centre of the circle 3x\(^2\) + 3y\(^2\) - 6x + 9y - 5 = 0...
Given n = 3, evaluate \(\frac{1}{(n-1)!} - \frac{1}{(n+1)!}\)...
Given that \(\begin{pmatrix} 1 & -3 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} -6 \\ P \end{pmat...
If \(\begin{vmatrix} 4 & x \\ 5 & 3 \end{vmatrix} = 32\), find the value of x....