Find the number of ways of selecting 8 subjects from 12 s...
Find the number of ways of selecting 8 subjects from 12 subjects for an examination
490
495
496
498
Correct answer is B
Combination is the number (n) of ways of selecting a number of (m) of objects from n
\(^{12}C_{8}\frac{12!}{8!(12-8)!}\\=\frac{12!}{8!4!}\\\frac{(12\times 11\times 10\times 9\times 8\times 7\times 6\times 5\times 4\times 3\times 2\times 1)}{8\times 7\times 6\times 5\times 4\times 3\times 2\times 1}\\After\hspace{1mm} cancelling \hspace{1mm}out \hspace{1mm}we\hspace{1mm} have\\11\times 5\times 9 = 495 \)
Find y, if \(\sqrt{12}-\sqrt{147}+y\sqrt{3} = 0\) ...
The inverse of matrix N = \(\begin{vmatrix} 2 & 3 \\ 1 & 4\end{vmatrix}\) is...
Simplify (6 - x - x2) ÷ (x2 - 4) ...
Factorize (4a + 3)2 - (3a - 2)2...
If \(2^n = 128\), find the value of \(2^{n - 1})(5^{n - 2})\)...
The shadow of a pole 5√3m high is 5m. Find the angle of elevation of the sun. ...