JAMB Mathematics Past Questions & Answers - Page 291

1,451.

The nth term of a sequence is given 31 - n , find the sum of the first terms of the sequence.

A.

\(\frac{13}{9}\)

B.

1

C.

\(\frac{1}{3}\)

D.

\(\frac{1}{9}\)

Correct answer is A

Tn = 31 - n

S3 = 31 - 1 + 31 - 2 + 31 - 3

= 1 + \(\frac{1}{3}\) + \(\frac{1}{9}\)

= \(\frac{13}{9}\)

1,452.

Sn is the sum of the first n terms of a series given by Sn = n\(^2\) - 1. Find the nth term

A.

4n + 1

B.

4n - 1

C.

2n + 1

D.

2n - 1

Correct answer is D

\(S_{n} = n^{2} - 1\)

\(T_{n} = S_{n} - S_{n - 1}\)

\(S_{n - 1} = (n - 1)^{2} - 1\)

= \(n^{2} - 2n + 1 - 1\)

= \(n^{2} - 2n\)

\(S_{n} - S_{n - 1} = (n^{2} - 1) - (n^{2} - 2n)\)

= \(2n - 1\)

1,453.

Find the range of values of x which satisfies the inequality 12x2 < x + 1

A.

-\(\frac{1}{4}\) < x < \(\frac{1}{3}\)

B.

\(\frac{1}{4}\) < x < -\(\frac{1}{3}\)

C.

-\(\frac{1}{3}\) < x < \(\frac{1}{4}\)

D.

-\(\frac{1}{4}\) < x < - \(\frac{1}{3}\)

Correct answer is A

12x2 < x + 1

12 - x - 1 < 0

12x2 - 4x + 3x - 1 < 0

4x(3x - 1) + (3x - 1) < 0

Case 1 (+, -)

4x + 1 > 0, 3x - 1 < 0

x > -\(\frac{1}{4}\)x < \(\frac{1}{3}\)

Case 2 (-, +) 4x + 1 < 0, 3x - 1 > 0

-\(\frac{1}{4}\) < x < - \(\frac{1}{3}\)

1,454.

Let f(x) = 2x + 4 and g(x) = 6x + 7 here g(x) > 0. Solve the inequality \(\frac{f(x)}{g(x)}\) < 1

A.

x < - \(\frac{3}{4}\)

B.

x > - \(\frac{4}{3}\)

C.

x > - \(\frac{3}{4}\)

D.

x > - 12

Correct answer is C

\(\frac{f(x)}{g(x)}\) < 1

∴ \(\frac{2x +4}{6x + 7}\) < 1

= 2x + 4 < 6x + 7

= 6x + 7 > 2x + 4

= 6x - 2x > 4 - 7

= 4x > -3

∴ x > -\(\frac{3}{4}\)