The mean of 2 - t, 4 + t, 3 - 2t, 2 + t and t - 1 is
t
-t
2
-2
Correct answer is C
Mean x = \(\frac{\sum x}{n}\)
= [(2 - t) + (4 + t) + (3 - 2t) + (2 + t) + (t - 1)] \(\div\) 5
= [11 - 1 + 3t - 3t] \(\div\) 5
= 10 \(\div\) 5
= 2
Evaluate \(\int (2x + 3)^{\frac{1}{2}} \delta x\)
\(\frac{1}{12} (2x + 3)^6 + k\)
\(\frac{1}{3} (2x + 3)^{\frac{1}{2}} + k\)
\(\frac{1}{3} (2x + 3)^{\frac{3}{2}} + k\)
\(\frac{1}{12} (2x + 3)^{\frac{3}{4}} + k\)
Correct answer is C
\(\int (2x + 3)^{\frac{1}{2}} \delta x\)
let u = 2x + 3, \(\frac{\delta y}{\delta x} = 2\)
\(\delta x = \frac{\delta u}{2}\)
Now \(\int (2x + 3)^{\frac{1}{2}} \delta x = \int u^{\frac{1}{2}}.{\frac{\delta x}{2}}\)
\( = \frac{1}{2} \int u^{\frac{1}{2}} \delta u\)
\( = \frac{1}{2} u^{\frac{3}{2}} \times \frac{2}{3} + k\)
\( = \frac{1}{3} u^{\frac{3}{2}} + k\)
\( = \frac{1}{3} (2x + 3)^{\frac{3}{2}} + k\)
cos 2x + k
\(\frac{1}{2}\)cos 2x + k
\(-\frac{1}{2}\)cos 2x + k
-cos 2x + k
Correct answer is C
\(\int \sin 2x dx = \frac{1}{2} (-\cos 2x) + k\)
\(- \frac{1}{2} \cos 2x + k\)
Find the minimum value of y = x2 - 2x - 3
4
1
-1
-4
Correct answer is D
y = x2 - 2x - 3,
Then \(\frac{\delta y}{\delta x} = 2x - 2\)
But at minimum point,\(\frac{\delta y}{\delta x} = 0\),
Which means 2x - 2 = 0
2x = 2
x = 1.
Hence the minimum value of y = x2 - 2x - 3 is;
ymin = (1)2 - 2(1) - 3
ymin = 1 - 2 - 3
ymin = -4
If y = cos 3x, find \(\frac{\delta y}{\delta x}\)
\(\frac{1}{3} \sin 3x\)
\(-\frac{1}{3} \sin 3x\)
3 sin 3x
-3 sin 3x
Correct answer is D
y = cos 3x
Let u = 3x so that y = cos u
Now, \(\frac{\delta y}{\delta x} = 3\),
\(\frac{\delta y}{\delta x} = -sin u\)
By the chain rule,
\(\frac{\delta y}{\delta x} = \frac{\delta y}{\delta u} \times \frac{\delta u}{\delta x}\)
\(\frac{\delta y}{\delta x} = (-\sin u) (3)\)
\(\frac{\delta y}{\delta x} = -3 \sin u\)
\(\frac{\delta y}{\delta x} = -3 \sin 3x\)